【題目】為維護交通秩序,防范電動自行車被盜,天津市公安局決定,開展二輪電動自行車免費登記、上牌照工作.電動自行車牌照分免費和收費(安裝防盜裝置)兩大類,群眾可以 自愿選擇安裝.已知甲、乙、丙三個不同類型小區(qū)的人數(shù)分別為15000,15000,20000.交管部門為了解社區(qū)居民意愿,現(xiàn)采用分層抽樣的方法從中抽取10人進行電話訪談.
(Ⅰ)應從甲小區(qū)和丙小區(qū)的居民中分別抽取多少人?
(Ⅱ)設從甲小區(qū)抽取的居民為,丙小區(qū)抽取的居民為.現(xiàn)從甲小區(qū)和丙小區(qū)已抽取的居民中隨機抽取2人接受問卷調查.
(。┰囉盟o字母列舉出所有可能的抽取結果;
(ⅱ)設為事件“抽取的2人來自不同的小區(qū)”,求事件發(fā)生的概率.
【答案】(Ⅰ)甲小區(qū)抽取3人、丙小區(qū)抽取4人.(Ⅱ)(i)見解析(ii).
【解析】
(Ⅰ)利用分層抽樣的性質能求出應從甲、乙、丙三個不同類型小區(qū)中分別抽取得3人,3人,4人.
(Ⅱ)(。從甲小區(qū)抽取的3位居民為,丙小區(qū)抽取的4人分別為利用列舉法能求出所有可能結果.
(ⅱ)由(。可得基本事件總個數(shù),為事件“抽取的2人來自不同的小區(qū)”利用列舉法能求出事件發(fā)生的概率.
(Ⅰ)因為三個小區(qū)共有50000名居民,所以運用分層抽樣抽取甲、丙小區(qū)的人數(shù)分別為:甲小區(qū):(人);
丙小區(qū):(人).
即甲小區(qū)抽取3人、丙小區(qū)抽取4人.
(Ⅱ)(i)設甲小區(qū)抽取的3人分別為,丙小區(qū)抽取的4人分別為,
則從7名居民中抽2名居民共有21種可能情況:
,
(ii)顯然,事件包含的基本事件有:
共12種,
所以.
故抽取的2人來自不同的小區(qū)的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+)+cos(2x﹣)+cos2x﹣sin2x,x∈R.
(1)求函數(shù)f(x)的最小正周期及單調遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[﹣]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有甲乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
總計 | 105 |
已知在全部105人中隨機抽取1人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;(把列聯(lián)表自己畫到答題卡上)
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認為“成績與班級有關系”?
參考公式:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,、分別為橢圓的焦點,橢圓的右準線與軸交于點,若,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)過、作互相垂直的兩直線分別與橢圓交于、、、四點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)的一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.
(1)寫出第一次服藥后,y與t之間的函數(shù)關系式y(tǒng)=f(t);
(2)據(jù)進一步測定:每毫升血液中含藥量不少于0.25微克時,治療有效.求服藥一次后治療有效的時間是多長?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知以點P為圓心的圓經(jīng)過點A(-1,0)和B(3,4),線段AB的垂直平分線交圓P于點C和D,且|CD|=.
(1)求直線CD的方程;
(2)求圓P的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前項和為,滿足,,數(shù)列滿足,,且.
(1)求數(shù)列的通項公式;
(2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;
(3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定一個由個小正方形拼成的棋盤形方格,這些小正方形的顏色黑白相間(如圖).
現(xiàn)定義一種運算A:把位于第i行的所有小正方形和位于第j列的所有小正方形都換成相反的顏色,即黑色的小正方形換成白色的,白色的小正方形換成黑色的,這里.我們把A稱為在位于第i行第j列上的小正方形上的一次運算.試問:能否經(jīng)過若干次上述運算把棋盤上的所有小正方形全部換成同一種顏色?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】同時具有性質:“① 最小正周期是;② 圖象關于直線對稱;③ 在上是單調遞增函數(shù)”的一個函數(shù)可以是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com