設(shè)x∈R,向量
a
=(x,1),
b
=(1,-2),且
a
b
,則|
a
+
b
|=(  )
A、
10
B、
11
C、2
3
D、
13
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:首先根據(jù)向量垂直的充要條件求出
a
的坐標(biāo),進(jìn)一步求出
a
+
b
=(2,1)+(1,-2)=(3,-1)
,最后求出向量的模.
解答: 解:已知:
a
=(x,1)
,
b
=(1,-2)

由于:
a
b

所以:
a
b
=0

所以:x-2=0
解得:x=2
a
=(2,1)

a
+
b
=(2,1)+(1,-2)=(3,-1)

所以:|
a
+
b
|
=
10

故選:A
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):向量垂直的充要條件,向量的模,向量的加減運(yùn)算,屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

空間直角坐標(biāo)系O-xyz中,已知點(diǎn)B是點(diǎn)A(3,7,-4)在xOz平面上的射影,則
OB
2等于( 。
A、(9,0,16)B、25
C、5D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間[-3,4]上隨機(jī)地取一個(gè)實(shí)數(shù)a,使得二次方程x2+2ax-2a+3=0有實(shí)根的概率是(  )
A、
1
7
B、
2
7
C、
3
7
D、
4
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a,b,c為它的三邊,且△ABC的面積為
a2+b2-c2
4
,則角C=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

據(jù)報(bào)道,全國很多省市將英語考試作為高考改革的重點(diǎn),一時(shí)間“英語考試該如何改”引起廣泛關(guān)注,為了解某地區(qū)學(xué)生和包括老師、家長在內(nèi)的社會(huì)人士對(duì)高考英語改革的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否“取消英語聽力”的問題,調(diào)查統(tǒng)計(jì)的結(jié)果如下表:
態(tài)度
調(diào)查人群
應(yīng)該取消應(yīng)該保留無所謂
在校學(xué)生2100人120人y人
社會(huì)人士600人x人z人
已知在全體樣本中隨機(jī)抽取1人,抽到持“應(yīng)該保留”態(tài)度的人的概率為0.05.
(Ⅰ)現(xiàn)用分層抽樣的方法在所有參與調(diào)查的人中抽取360人進(jìn)行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(Ⅱ)已知y≥657,z≥55,若所選擇的在校學(xué)生的人數(shù)低于被調(diào)查人群總數(shù)的80%,則認(rèn)為本次調(diào)查“失效”,求本次調(diào)查“失效”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-
y2
5
=1的離心率e=( 。
A、
3
2
B、
5
2
C、
3
4
D、
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1是雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)的左焦點(diǎn),以線段F1O為邊作正三角形F1OM,若頂點(diǎn) M在雙曲線上,則雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示程序的輸出結(jié)果為s=132.則判斷中應(yīng)填
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)(0,1)的直線l:xtanα-y-3tanβ=0的一個(gè)法向量為(2,-1),則tan(α+β)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案