【題目】解答題
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)設(shè)f(x)=x2﹣x+1,實(shí)數(shù)a滿足|x﹣a|<1,求證:|f(x)﹣f(a)|<2(|a+1|)
【答案】
(1)解:根據(jù)題意,對x分3種情況討論:
①當(dāng)x<0時(shí),原不等式可化為﹣2x+1<﹣x+1,解得x>0,又x<0,則x不存在,
此時(shí),不等式的解集為.
②當(dāng)0≤x< 時(shí),原不等式可化為﹣2x+1<x+1,解得x>0,又0≤x< ,
此時(shí)其解集為{x|0<x< }.
③當(dāng)x≥ 時(shí),原不等式化為2x﹣1<x+1,解得 ≤x<2,
又由x≥ ,此時(shí)其解集為{x| ≤x<2},
綜上,原不等式的解集為{x|0<x<2}.
(2)證明:∵f(x)=x2﹣x+1,實(shí)數(shù)a滿足|x﹣a|<1,
故|f(x)﹣f(a)|=|x2﹣x﹣a2+a|=|x﹣a||x+a﹣1|<|x+a﹣1|=|x﹣a+2a﹣1|≤|x﹣a|+|2a﹣1|<1+|2a|+1=2(|a|+1).
∴|f(x)﹣f(a)|<2(|a|+1).
【解析】(1)根據(jù)題意,對x分3種情況討論:①當(dāng)x<0時(shí),②當(dāng)0≤x< 時(shí),③當(dāng)x≥ 時(shí);在各種情況下.去掉絕對值,化為整式不等式,解可得三個(gè)解集,進(jìn)而將這三個(gè)解集取并集即得所求.(2)根據(jù)|f(x)﹣f(a)|=|x2﹣x﹣a2+a|=|x﹣a||x+a﹣1|<|x+a﹣1|=|x﹣a+2a﹣1|≤|x﹣a|+|2a﹣1|<1+|2a|+1,證得結(jié)果.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用絕對值不等式的解法的相關(guān)知識(shí)可以得到問題的答案,需要掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號(hào).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓的一個(gè)焦點(diǎn)為( ,0),(1, )是橢圓上的一個(gè)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的上、下頂點(diǎn)分別為A,B,P(x0 , y0)(x0≠0)是橢圓上異于A,B的任意一點(diǎn),PQ⊥y軸,Q為垂足,M為線段PQ中點(diǎn),直線AM交直線l:y=﹣1于點(diǎn)C,N為線段BC的中點(diǎn),如果△MON的面積為 ,求y0的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右焦點(diǎn) ,且經(jīng)過點(diǎn) ,點(diǎn)M是x軸上的一點(diǎn),過點(diǎn)M的直線l與橢圓C交于A,B兩點(diǎn)(點(diǎn)A在x軸的上方)
(1)求橢圓C的方程;
(2)若|AM|=2|MB|,且直線l與圓 相切于點(diǎn)N,求|MN|的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線y=x﹣2與拋物線y2=2x交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則過A,B,O三點(diǎn)的圓的方程為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位280名員工參加“我愛閱讀”活動(dòng),他們的年齡在25歲至50歲之間,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50),得到的頻率分布直方圖如圖所示.
(I)現(xiàn)要從年齡低于40歲的員工中用分層抽樣的方法抽取12人,則年齡在第1,2,3組的員工人數(shù)分別是多少?
(II)為了交流讀書心得,現(xiàn)從上述12人中再隨機(jī)抽取3人發(fā)言,設(shè)3人中年齡在[35,40)的人數(shù)為ξ,求ξ的數(shù)學(xué)期望;
(III)為了估計(jì)該單位員工的閱讀傾向,現(xiàn)對從該單位所有員工中按性別比例抽取的40人做“是否喜歡閱讀國學(xué)類書籍”進(jìn)行調(diào)查,調(diào)查結(jié)果如下表所示:(單位:人)
喜歡閱讀國學(xué)類 | 不喜歡閱讀國學(xué)類 | 合計(jì) | |
男 | 14 | 4 | 18 |
女 | 8 | 14 | 22 |
合計(jì) | 22 | 18 | 40 |
根據(jù)表中數(shù)據(jù),我們能否有99%的把握認(rèn)為該單位員工是否喜歡閱讀國學(xué)類書籍和性別有關(guān)系?
附: ,其中n=a+b+c+d
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,給定兩個(gè)平面單位向量 和 ,它們的夾角為120°,點(diǎn)C在以O(shè)為圓心的圓弧AB上,且 (其中x,y∈R),則滿足x+y≥ 的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ x2﹣(1+a)x.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0對定義域中的任意x恒成立,求實(shí)數(shù)a的取值范圍;
(3)證明:對任意正整數(shù)m,n,不等式 + +…+ > 恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|x﹣1|+|x+1|,(x∈R)
(1)求證:f(x)≥2;
(2)若不等式f(x)≥ 對任意非零實(shí)數(shù)b恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC﹣A1B1C1的底面為直角三角形,兩直角邊AB和AC的長分別為4和2,側(cè)棱AA1的長為5.
(1)求三棱柱ABC﹣A1B1C1的體積;
(2)設(shè)M是BC中點(diǎn),求直線A1M與平面ABC所成角的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com