【題目】如圖,過橢圓上一點軸作垂線,垂足為左焦點,分別為的右頂點,上頂點,且,.

1)求橢圓的方程;

2上的兩點,若四邊形逆時針排列)的對角線所在直線的斜率為,求四邊形面積的最大值.

【答案】(1);(2).

【解析】

試題分析:(1)設(shè)焦距為,則,由,則,由解得,橢圓的方程為;(2)依題意可設(shè)直線,,聯(lián)立直線的方程和橢圓的方程,寫出根與系數(shù)關(guān)系,求得弦長的值,利用點到直線的距離公式求得,的距離,所以四邊形的面積,所以當(dāng)時,取得最大值.

試題解析:

(1)由題意可得,所以.

,解得,

,得,

橢圓的方程為.

(2)依題意可設(shè)直線,

將直線的方程代入橢圓,

,.

到直線的距離

到直線的距離.

所以四邊形的面積,

所以當(dāng)時,取得最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我校名教師參加我縣六城同創(chuàng)干部職工進網(wǎng)絡(luò),服務(wù)群眾進社區(qū)活動,他們的年齡均在25歲至50歲之間,按年齡分組:第一組,第二組,第三組,第四組,第五組,得到的頻率分布直方圖如圖所示:

上表是年齡的頻數(shù)分布表.

(1)求正整數(shù)的值;

(2)根據(jù)頻率分布直方圖估計我校這名教師年齡的中位數(shù)和平均數(shù);

(3)從第一、二組用分層抽樣的方法抽取4人,現(xiàn)在從這4人中任取兩人接受咸豐電視臺的采訪,求從這4人中選取的兩人年齡均在第二組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由三棱柱和四棱錐構(gòu)成的幾何體中, 平面 , , ,平面平面

(Ⅰ)求證: ;

(Ⅱ)若為棱的中點,求證: 平面;

(Ⅲ)在線段上是否存在點,使直線與平面所成的角為?若存在,求的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,且,數(shù)列為等差數(shù)列,且, .

(1)求數(shù)列的通項公式;

(2)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列滿足 (), .

(1)求證: 是等比數(shù)列,并求出數(shù)列的通項公式;

(2)對任意的正整數(shù),當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;

(3)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,過橢圓右頂點和上頂點的直線與圓相切.

(1)求橢圓的方程;

(2)設(shè)是橢圓的上頂點,過點分別作直線交橢圓兩點,設(shè)這兩條直線的斜率分別為,且,證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,

1若曲線在點處的切線為,求的值;

2討論函數(shù)的單調(diào)性;

3設(shè)函數(shù),若至少存在一個,使得成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班有學(xué)生50人,其中男同學(xué)30人,用分層抽樣的方法從該班抽取5人去參加某社區(qū)服務(wù)活動。

(1)求從該班男、女同學(xué)中各抽取的人數(shù);

(2)從抽取的5名同學(xué)中任選2名談此活動的感受,求選出的2名同學(xué)中恰有1名男同學(xué)的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校高三上學(xué)期期末數(shù)學(xué)考試成績中,隨機抽取了名學(xué)生的成績得到頻率分布直方圖如下:

(1)若用分層抽樣的方法從分數(shù)在的學(xué)生中共抽取人,該人中成績在的有幾人?

(2)在(1)中抽取的人中,隨機抽取人,求分數(shù)在人的概率.

(3)根據(jù)頻率分布直方圖,估計該校高三學(xué)生本次數(shù)學(xué)考試的平均分;

查看答案和解析>>

同步練習(xí)冊答案