若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},則集合A∩B=( 。
分析:先利用二次不等式的解集求出集合B,然后再求出集合A∩B.
解答:解:∵B={x|(x+1)(4-x)<4}={x|x<0或x>3}
又A={x|x>2或x<-1},
∴A∩B={x|x>2或x<-1}∩{x|x<0或x>3}={x|x>3或x<-1}
故選C.
點(diǎn)評:本題考查集合的性質(zhì)和運(yùn)算,解題時要根據(jù)實(shí)際情況,注意公式的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記U=R,若集合A={x|3≤x<8},B={x|2<x≤6},則
(1)求A∩B,A∪B,?UA;
(2)若集合C={x|x≥a},A⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x||x|>1,x∈R},B={y|y=x2,x∈R},則(CRA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)模擬)若集合A={x||x|>1},B={x|x≥0},全集U=R,則(?RA)∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若集合A={x|x>2或x<-1},B={x|(x+1)(4-x)<4},則集合A∩B=( 。
A.{x|x>0或x<-3}B.{x|x>0或x<-1}C.{x|x>3或x<-1}D.{x|2<x<3}

查看答案和解析>>

同步練習(xí)冊答案