(本小題12分)如圖,直三棱柱中, ,為中點(diǎn),若規(guī)定主視方向?yàn)榇怪庇谄矫?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082415045464004950/SYS201208241505261419137401_ST.files/image005.png">的方向,則可求得三棱柱左視圖的面積為;
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積。
解:(Ⅰ)見解析;(2),則。
【解析】本試題主要考查了線面平行的判定定理和運(yùn)用,以及三棱錐的體積的綜合運(yùn)用。
(1)要證明線面平行只要證明,取交點(diǎn)O,連接OD,易知,可得。
(2)先求解點(diǎn)B到AC的距離,后利用射影定理可得,;則三棱錐以為高,,,結(jié)合體積公式得到。
解:(Ⅰ)如圖,取交點(diǎn)O,連接OD,易知
可證明到……….5分
(2)主視圖方向?yàn)榇怪庇谄矫?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012082415045464004950/SYS201208241505261419137401_DA.files/image011.png">的方向,則可求得三棱柱左視圖為一個(gè)
矩形,其高為2面積為,求得左視圖長(zhǎng)為,即在三角形ABC中,B點(diǎn)到AC的距離為,……….8分
根據(jù)射影定理可得,;則三棱錐以為高,,則……….12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省常德市高三質(zhì)量檢測(cè)考試數(shù)學(xué)理卷 題型:解答題
(本小題12分)
如圖3,已知在側(cè)棱垂直于底面
的三棱柱中,AC=BC, AC⊥BC,點(diǎn)D是A1B1中點(diǎn).
(1)求證:平面AC1D⊥平面A1ABB1;
(2)若AC1與平面A1ABB1所成角的正弦值
為,求二面角D- AC1-A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河北省高三高考?jí)狠S模擬考試文數(shù) 題型:解答題
(本小題12分)如圖,四棱錐中,
側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面是的菱形,為的中點(diǎn).
(1)求與底面所成角的大小;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆海南省高一上學(xué)期教學(xué)質(zhì)量監(jiān)測(cè)三數(shù)學(xué) 題型:解答題
(本小題12分)如圖,四棱錐中,底面是正方形,, 底面, 分別在上,且
(1)求證:平面∥平面.
(2)求直線與平面面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年海南省高二下學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)文卷(一) 題型:解答題
(本小題12分)
如圖:⊙O為△ABC的外接圓,AB=AC,過點(diǎn)A的直線交⊙O于D,交BC延長(zhǎng)線于F,DE是BD的延長(zhǎng)線,連接CD。
① 求證:∠EDF=∠CDF;
②求證:AB2=AF·AD。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009-2010集寧一中學(xué)高三年級(jí)理科數(shù)學(xué)第一學(xué)期期末考試試題 題型:解答題
(本小題12分)如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),
(I)求證:平面BCD;
(II)求異面直線AB與CD所成角的大小;
(III)求點(diǎn)E到平面ACD的距離。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com