如圖,已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的右準(zhǔn)線l1與一條漸近線l2交于點(diǎn)M,F(xiàn)是雙曲線C的右焦點(diǎn),O為坐標(biāo)原點(diǎn).
(I)求證:
OM
MF
;
(II)若|
MF
|=1且雙曲線C的離心率e=
6
2
,求雙曲線C的方程;
(III)在(II)的條件下,直線l3過點(diǎn)A(0,1)與雙曲線C右支交于不同的兩點(diǎn)P、Q且P在A、Q之間,滿足
AP
AQ
,試判斷λ的范圍,并用代數(shù)方法給出證明.
分析:(Ⅰ)可求得點(diǎn)M(
a2
c
,
ab
c
),F(xiàn)(c,0),
MF
=(
b2
c
,-
ab
c
),計(jì)算
OM
MF
=0即可;
(Ⅱ)由e=
6
2
,可得a2=2b2,又|
MF
|=1,可求得雙曲線C的方程為:
x2
2
-y2=1
;
(Ⅲ)設(shè)l3:y=kx+1,點(diǎn)P(x1,y1),Q(x2,y2),由
x2-2y2=2
y=kx+1
聯(lián)立得(1-2k2)x2-4kx+4=0,結(jié)合l3與雙曲線C右支交于不同的兩點(diǎn)P、Q,列關(guān)系式可求得-1<k<-
2
2
,再結(jié)合
AP
AQ
,即可求得λ的取值范圍.
解答:證明:(I)∵右準(zhǔn)線l1:x=
a2
c
,漸近線l2:y=
b
a
x
,
M(
a2
c
,
ab
c
)
,
∵F(c,0),c2=a2+b2,
OM
=(
a2
c
,
ab
c
)
MF
=(c-
a2
c
,-
ab
c
)=(
b2
c
,-
ab
c
)

OM
MF
=
a2b2
c2
-
a2b2
c2
=0
,
OM
MF
…(3分)
(II)∵e=
6
2
,
b
a
=
e2-1
=
2
2
,
∴a2=2b2,
∵|
MF
|=1,
b4
c2
+
a2b2
c2
=1
,
b2(b2+a2)
c2
=1

∴雙曲線C的方程為:
x2
2
-y2=1
…(7分)
(III)由題意可得0<λ<1…(8分)
證明:設(shè)l3:y=kx+1,點(diǎn)P(x1,y1),Q(x2,y2
x2-2y2=2
y=kx+1
得(1-2k2)x2-4kx+4=0∵l3與雙曲線C右支交于不同的兩點(diǎn)P、Q
1-2k2≠0
△=16k2+16(1-2k2)>0
x1+x2=
4k
1-2k2
>0
x1x2=-
4
1-2k2
>0
  ∴
k≠±
2
2
k2<1
k<0
1-2k2<0
,
-1<k<-
2
2
…(11分)
AP
AQ
,
∴(x1,y1-1)=λ(x2,y2-1),得x1=λx2
∴(1+λ)x2=
4k
1-2k2
,λ
x
2
2
=-
4
1-2k2
(1+λ)2
λ
=
16k2
-4(1-2k2)
=
4k2
2k2-1
=2+
2
2k2-1

-1<k<-
2
2
,
∴0<2k2-1<1,
(1+λ)2
λ
>4

∴(1+λ)2>4λ,
∴λ2-2λ+1>0
∴λ的取值范圍是(0,1)…(13分)
點(diǎn)評(píng):本題考查直線與圓錐曲線的綜合問題,著重考查雙曲線的標(biāo)準(zhǔn)方程與簡單幾何性質(zhì)及其應(yīng)用,難點(diǎn)在于(Ⅲ)λ的范圍的求解,方程思想與轉(zhuǎn)化思想的綜合運(yùn)用,屬于較難的題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知雙曲線C:
y2
a2
-
x2
b2
=1
(a>0,b>0)的離心率e=
2
,F(xiàn)1、F2分別為雙曲線C的上、下焦點(diǎn),M為上準(zhǔn)線與漸近線在第一象限的交點(diǎn),且
MF1
MF2
=-1.
(1)求雙曲線C的方程;
(2)直線l交雙曲線C的漸近線l1、l2于P1、P2,交雙曲線于P、Q,且
P1P
=2
PP2
,求|
PQ
|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知雙曲線C:數(shù)學(xué)公式(a>0,b>0)的離心率e=數(shù)學(xué)公式,F(xiàn)1、F2分別為雙曲線C的上、下焦點(diǎn),M為上準(zhǔn)線與漸近線在第一象限的交點(diǎn),且數(shù)學(xué)公式=-1.
(1)求雙曲線C的方程;
(2)直線l交雙曲線C的漸近線l1、l2于P1、P2,交雙曲線于P、Q,且數(shù)學(xué)公式,求|數(shù)學(xué)公式|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年吉林省延邊五中高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

如圖,已知雙曲線C:(a>0,b>0)的離心率e=,F(xiàn)1、F2分別為雙曲線C的上、下焦點(diǎn),M為上準(zhǔn)線與漸近線在第一象限的交點(diǎn),且=-1.
(1)求雙曲線C的方程;
(2)直線l交雙曲線C的漸近線l1、l2于P1、P2,交雙曲線于P、Q,且,求||的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年吉林省延邊五中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

如圖,已知雙曲線C:(a>0,b>0)的離心率e=,F(xiàn)1、F2分別為雙曲線C的上、下焦點(diǎn),M為上準(zhǔn)線與漸近線在第一象限的交點(diǎn),且=-1.
(1)求雙曲線C的方程;
(2)直線l交雙曲線C的漸近線l1、l2于P1、P2,交雙曲線于P、Q,且,求||的最小值.

查看答案和解析>>

同步練習(xí)冊答案