動點P到點F(1,0)的距離與它到直線x= -1的距離相等,則點的P軌跡方程為           .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:河北省邯鄲市臨漳一中2012屆高三春季開學摸底考試數(shù)學文科試題 題型:022

下列四個命題:

①若m∈(0,1],則函數(shù)的最小值為;

②已知平面α,β,直線l,m,若l⊥α,mβ,α⊥β,則l∥m;

③△ABC中的夾角等于180°-A;

④若動點P到點F(1,0)的距離比到直線l:x=-2的距離小1,則動點P的軌跡方程為y2=4x.

其中正確命題的序號為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線W上的動點M到點F(1,0)的距離等于它到直線x=-1的距離.過點P(-1,0)任作一條直線l與曲線W交于不同的兩點A、B,點A關于x軸的對稱點為C.

(1)求曲線W的方程;

(2)求證:(λ∈R);

(3)求△PBC面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P到點F(2,0)的距離與它到直線x=1的距離之比為.

(1)求動點P的軌跡方程;

(2)設點P的軌跡為曲線C,過點F作互相垂直的兩條直線l1、l2,l1交曲線C于A、B兩點,l2交曲線C于M、N兩點.求證:+為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P到點F(2,0)的距離與它到直線x=1的距離之比為2.

(1)求動點P的軌跡方程;

(2)設點P的軌跡為曲線C,過點F作互相垂直的兩條直線l1、l2,l1交曲線C于A、B兩點,l2交曲線C于M、N兩點.求證:+為定值.

查看答案和解析>>

同步練習冊答案