【題目】已知是等差數(shù)列, 是等比數(shù)列,且 .
(1)數(shù)列和的通項(xiàng)公式;
(2)設(shè),求數(shù)列前項(xiàng)和.
【答案】(1);(2).
【解析】試題分析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為, 運(yùn)用等差數(shù)列和等比數(shù)列的通項(xiàng)公式,列出關(guān)于公差與公比的方程組,解方程可得公差和公比的值,從而可得數(shù)列和的通項(xiàng)公式;(2)由(1)知, , .因此,利用分組求和法,結(jié)合等比數(shù)列的求和公式與等差數(shù)列的求和公式,化簡(jiǎn)整理,即可得到數(shù)列前項(xiàng)和.
試題解析:(1)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為.
因?yàn)?/span>,所以.解得.
又因?yàn)?/span>,所以.
所以, , .
(2)由(1)知, , .
因此
數(shù)列前項(xiàng)和為.
數(shù)列的前項(xiàng)和為.
所以,數(shù)列的前項(xiàng)和為, .
【方法點(diǎn)晴】本題主要考查等差數(shù)列的通項(xiàng)公式及等比數(shù)列的通項(xiàng)、等差等比數(shù)列的求和公式和利用“分組求和法”求數(shù)列前項(xiàng)和,屬于中檔題. 利用“分組求和法”求數(shù)列前項(xiàng)和常見(jiàn)類型有兩種:一是通項(xiàng)為兩個(gè)公比不相等的等比數(shù)列的和或差,可以分別用等比數(shù)列求和后再相加減;二是通項(xiàng)為一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的和或差,可以分別用等差數(shù)列求和、等比數(shù)列求和后再相加減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家外賣公司,其送餐員的日工資方案如下:甲公司的底薪80元,每單抽成4元;乙公司無(wú)底薪,40單以內(nèi)(含40單)的部分每單抽成6元,超出40單的部分每單抽成7元,假設(shè)同一公司送餐員一天的送餐單數(shù)相同,現(xiàn)從兩家公司各隨機(jī)抽取一名送餐員,并分別記錄其50天的送餐單數(shù),得到如下頻數(shù)表:
甲公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 10 | 15 | 10 | 10 | 5 |
乙公司送餐員送餐單數(shù)頻數(shù)表
送餐單數(shù) | 38 | 39 | 40 | 41 | 42 |
天數(shù) | 5 | 10 | 10 | 20 | 5 |
(1)現(xiàn)從甲公司記錄的50天中隨機(jī)抽取3天,求這3天送餐單數(shù)都不小于40的概率;
(2)若將頻率視為概率,回答下列兩個(gè)問(wèn)題:
①記乙公司送餐員日工資為(單位:元),求的分布列和數(shù)學(xué)期望;
②小王打算到甲、乙兩家公司中的一家應(yīng)聘送餐員,如果僅從日工資的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為小王作出選擇,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2-ax-xln x,且f(x)≥0.
(1)求a;
(2)證明:f(x)存在唯一的極大值點(diǎn)x0,且e-2<f(x0)<2-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一幾何體的平面展開(kāi)圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),
在此幾何體中,給出下面四個(gè)結(jié)論:
①直線BE與直線CF異面; ②直線BE與直線AF異面;
③直線EF∥平面PBC; ④平面BCE⊥平面PAD.
其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·鄭州第二次質(zhì)量預(yù)測(cè))如圖,高為1的等腰梯形ABCD中,AM=CD=AB=1.現(xiàn)將△AMD沿MD折起,使平面AMD⊥平面MBCD,連接AB,AC.
(1)在AB邊上是否存在點(diǎn)P,使AD∥平面MPC?
(2)當(dāng)點(diǎn)P為AB邊的中點(diǎn)時(shí),求點(diǎn)B到平面MPC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的右焦點(diǎn)與短軸兩個(gè)端點(diǎn)的連線互相垂直.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)為橢圓的上一點(diǎn),過(guò)原點(diǎn)且垂直于的直線與直線交于點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,為正三角形,且側(cè)面PAB⊥底面ABCD. E,M分別為線段AB,PD的中點(diǎn).
(I)求證:PE⊥平面ABCD;
(II)求證:PB//平面ACM;
(III)在棱CD上是否存在點(diǎn)G,使平面GAM⊥平面ABCD,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn), 的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,過(guò)點(diǎn)且斜率不為0的直線與交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明直線過(guò)定點(diǎn),并求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓的圓心坐標(biāo)為,半徑為2.以極點(diǎn)為原點(diǎn),極軸為的正半軸,取相同的長(zhǎng)度單位建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)求圓的極坐標(biāo)方程;
(2)設(shè)與圓的交點(diǎn)為, 與軸的交點(diǎn)為,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com