【題目】已知拋物線C:y2=2px(p>0)過點M(m,2),其焦點為F,且|MF|=2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設E為y軸上異于原點的任意一點,過點E作不經(jīng)過原點的兩條直線分別與拋物線C和圓F:(x﹣1)2+y2=1相切,切點分別為A,B,求證:直線AB過定點F(1,0).

【答案】解:(Ⅰ)拋物線C的準線方程為: ,

又M在拋物線上,
,
∴p2﹣4p+4=0,
解得p=2;
所以拋物線C的方程為y2=4x;
(Ⅱ)設點E(0,t)(t≠0),
由已知切線不為y軸,設EA:y=kx+t,
聯(lián)立 ,消去y,
可得k2x2+(2kt﹣4)x+t2=0;
直線EA與拋物線C相切,
∴△=(2kt﹣4)2﹣4k2t2=0,
即kt=1代入 ,
∴x=t2 , 即A(t2 , 2t);
設切點B(x0 , y0),則由幾何性質(zhì)可以判斷點O,B關于直線EF:y=﹣tx+t對稱,

解得: ,

思路1:直線AB的斜率為 ,
直線AB的方程為
整理 ,
∴直線AB過定點恒過定點F(1,0);
當t=±1時,A(1,±2),B(1,±1),此時直線AB為x=1,過點F(1,0);
綜上,直線AB過定點恒過定點F(1,0),
思路2:直線AF的斜率為
直線BF的斜率為 ,
∴kAF=kBF , 即A,B,F(xiàn)三點共線;
當t=±1時,A(1,±2),B(1,±1),此時A,B,F(xiàn)共線;
∴直線AB過定點F
【解析】(Ⅰ)根據(jù)拋物線的準線方程與M在拋物線上,列出方程組求出p的值即得拋物線方程;(Ⅱ)根據(jù)直線EA與圓錐曲線相切,用直線方程與圓錐曲線方程聯(lián)立,△=0,根據(jù)圓的對稱性,寫出直線AB的方程;
思路1:利用直線AB的斜率、直線AB的方程,判斷直線AB恒過定點;
思路2:根據(jù)三點共線以及直線的斜率,判斷直線AB過定點F.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 恰有兩個零點,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為的函數(shù),若滿足;② ,且時,都有;③ ,且時,都有,則稱為“偏對稱函數(shù)”.現(xiàn)給出四個函數(shù):;② ; ③;④.則其中是“偏對稱函數(shù)”的函數(shù)序號為 _______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為比較甲、乙兩地某月11時的氣溫情況,隨機選取該月中的5天中11時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月11時的平均氣溫低于乙地該月11時的平均氣溫
②甲地該月11時的平均氣溫高于乙地該月11時的平均氣溫
③甲地該月11時的氣溫的標準差小于乙地該月11時的氣溫的標準差
④甲地該月11時的氣溫的標準差大于乙地該月11時的氣溫的標準差
其中根據(jù)莖葉圖能得到的正確結(jié)論的編號為(

A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)有、兩個崗位招聘大學畢業(yè)生,其中第一天收到這兩個崗位投簡歷的大學生人數(shù)如下表:

崗位

崗位

總計

女生

12

8

20

男生

24

56

80

總計

36

64

100

(1)根據(jù)以上數(shù)據(jù)判斷是有的把握認為招聘的、兩個崗位與性別有關?

(2)從投簡歷的女生中隨機抽取兩人,記其中投崗位的人數(shù)為,求的分布列和數(shù)學期望.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.025

0.010

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)從某醫(yī)院中隨機抽取了位醫(yī)護人員的關愛患者考核分數(shù)(患者考核:分制),用相關的特征量表示;醫(yī)護專業(yè)知識考核分數(shù)(試卷考試:分制),用相關的特征量表示,數(shù)據(jù)如下表:

(1)求關于的線性回歸方程(計算結(jié)果精確到);

(2)利用(1)中的線性回歸方程,分析醫(yī)護專業(yè)考核分數(shù)的變化對關愛患者考核分數(shù)的影響,并估計當某醫(yī)護人員的醫(yī)護專業(yè)知識考核分數(shù)為分時,他的關愛患者考核分數(shù)(精確到).

參考公式及數(shù)據(jù):回歸直線方程中斜率和截距的最小二乘法估計公式分別為

,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)需要設計一個倉庫,由上下兩部分組成,上部的形狀是正四棱錐,下部的形狀是正四棱柱(如圖所示),并要求正四棱柱的高是正四棱錐的高的4倍.

(1)若,,則倉庫的容積是多少?

(2)若正四棱錐的側(cè)棱長為,當為多少時,下部的正四棱柱側(cè)面積最大,最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象在點處的切線方程為,求,的值;

(2)當時,在區(qū)間上至少存在一個,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若,求函數(shù)的零點;

(2)若恒成立,求的取值范圍;

(3)設函數(shù),解不等式.

查看答案和解析>>

同步練習冊答案