【題目】已知二項(xiàng)式( n展開式中的各項(xiàng)系數(shù)的絕對(duì)值之和為128.
(1)求展開式中系數(shù)最大的項(xiàng);
(2)求展開式中所有的有理項(xiàng).

【答案】
(1)解:二項(xiàng)式( n展開式中的各項(xiàng)系數(shù)的絕對(duì)值之和為128,

即為各項(xiàng)二項(xiàng)式系數(shù)之和為128,即2n=128得n=7,

則二項(xiàng)式( 7展開式的通項(xiàng)為(﹣1)rC7r ,

∵C73=C74=35,

∴當(dāng)r=4時(shí),展開式中系數(shù)最大,

∴展開式中系數(shù)最大的項(xiàng)為35x3,


(2)解:當(dāng) 為整數(shù)時(shí),即r=7,4,1

∴展開式中所有的有理項(xiàng)(﹣1)7C77x7=﹣x7,或35x3,﹣7x


【解析】(1)二項(xiàng)式( n展開式中的各項(xiàng)系數(shù)的絕對(duì)值之和為128,即為各項(xiàng)二項(xiàng)式系數(shù)之和為128,即2n=128,解得即可,當(dāng)r=4時(shí),展開式中系數(shù)最大(2)考慮通項(xiàng)公式中,x的指數(shù)為3的倍數(shù)的情況,即可得到個(gè)數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為 與p,且乙投球2次均未命中的概率為
(1)求乙投球的命中率p;
(2)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對(duì)本班人進(jìn)行了問(wèn)卷調(diào)查得到了如下的列聯(lián)表:已知在全部人中隨機(jī)抽取人,抽到喜愛打籃球的學(xué)生的概率為

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(不用寫計(jì)算過(guò)程);并求出:有多大把握認(rèn)為喜愛打籃球與性別有關(guān),說(shuō)明你的理由;

(2)若從該班不喜愛打籃球的男生中隨機(jī)抽取3人調(diào)查,求其中某男生甲被選到的概率。下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5. 024

6.635

7.879

10.828

(參考公式: ,其中)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程為 (φ為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4 cosθ.
(1)求C1與C2交點(diǎn)的直角坐標(biāo);
(2)已知曲線C3的參數(shù)方程為 (0≤α<π,t為參數(shù),且t≠0),C3與C1相交于點(diǎn)P,C2與C3相交于點(diǎn)Q,且|PQ|=8,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設(shè)置了相應(yīng)的垃圾箱.為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機(jī)抽取了該市三類垃圾箱中總計(jì)60噸廚余垃圾,假設(shè)廚余垃圾在“廚余垃圾”箱、“可回收物”箱和“其他垃圾”箱的投放量分別為x,y,z,其中x>0,x+y+z=60,則數(shù)據(jù)x,y,z的標(biāo)準(zhǔn)差的最大值為 . (注:方差 ,其中 為x1 , x2 , …,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某產(chǎn)品的歷史收益率的頻率分布直方圖如圖所示.

(1)試估計(jì)該產(chǎn)品收益率的中位數(shù);

(2)若該產(chǎn)品的售價(jià)(元)與銷量(萬(wàn)份)之間有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如表5組的對(duì)應(yīng)數(shù)據(jù):

售價(jià)(元)

25

30

38

45

52

銷量(萬(wàn)份)

7.5

7.1

6.0

5.6

4.8

根據(jù)表中數(shù)據(jù)算出關(guān)于的線性回歸方程為,求的值;

(3)若從表中五組銷量數(shù)據(jù)中隨機(jī)抽取兩組,記其中銷量超過(guò)6萬(wàn)份的組數(shù)為,求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖輸出的結(jié)果為(

A.(﹣2,2)
B.(﹣4,0)
C.(﹣4,﹣4)
D.(0,﹣8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),f(x)在[0,+∞)上是增函數(shù),且f( )=0,則不等式f( )>0的解集為(
A.(0, )∪(2,+∞)
B.( ,1)∪(2,+∞)??
C.(0,
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+3在x=2時(shí)取得最小值,且函數(shù)f(x)的圖象在x軸上截得的線段長(zhǎng)為2.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(x)﹣mx的一個(gè)零點(diǎn)在區(qū)間(0,2)上,另一個(gè)零點(diǎn)在區(qū)間(2,3)上,求實(shí)數(shù)m的取值范圍.
(3)當(dāng)x∈[t,t+1]時(shí),函數(shù)f(x)的最小值為﹣ ,求實(shí)數(shù)t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案