已知某海濱浴場(chǎng)的海浪高達(dá)y(米)是時(shí)間t(0≤t≤24,單位:小時(shí))的函數(shù),記作y=f(t).下表是某日各時(shí)的浪高數(shù)據(jù).
t(時(shí)) |
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
y(米) |
1.5 |
1.0 |
0.5 |
1.0 |
1.5 |
1.0 |
0.5 |
0.99 |
1.5 |
經(jīng)長(zhǎng)期觀測(cè),y=f(t)的曲線可近似地看成是函數(shù)y=Acosωt+b.
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)y=Acosωt+b的最小正周期T、振幅A及函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時(shí)才對(duì)沖浪愛好者開放,請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8:00至晚上20:00之間,有多長(zhǎng)時(shí)間可供沖浪者進(jìn)行運(yùn)動(dòng)?
(1) y=cost+1.
(2)在規(guī)定時(shí)間上午8:00至晚上2:00之間,有6個(gè)小時(shí)時(shí)間可供沖浪者運(yùn)動(dòng),即上午9:00至下午15:00.
【解析】
試題分析:(1)由表中數(shù)據(jù),知周期T=12,
∵ω===.
由t=0,y=1.5,得A+b=1.5.
由t=3,y=1.0,得b=1.0.
∴A=0.5,b=1,∴振幅為,
∴y=cost+1.
(2)由題意知,當(dāng)y>1時(shí)才可對(duì)沖浪者開放.
∴cost+1>1,∴cost>0.
∴2kπ-<t<2kπ+,
即12k-3<t<12k+3.
∵0≤t≤24,故可令k分別為0、1、2,得0≤t<3或9<t<15或21<t≤24.
∴在規(guī)定時(shí)間上午8:00至晚上20:00之間,有6個(gè)小時(shí)時(shí)間可供沖浪者運(yùn)動(dòng),即上午9:00至下午15:00.
考點(diǎn):函數(shù)模型,三角函數(shù)的圖象和性質(zhì)。
點(diǎn)評(píng):中檔題,作為一道實(shí)際應(yīng)用問(wèn)題,首先應(yīng)“審清題意,明確函數(shù)模型,解答數(shù)學(xué)問(wèn)題”。余弦形函數(shù)的圖像和性質(zhì),可類比正弦型函數(shù)的圖象和性質(zhì)加以研究。本題與不等式解法相結(jié)合,注意將數(shù)字轉(zhuǎn)化成時(shí)刻。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
t/時(shí) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/米 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
t/時(shí) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/米 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
π |
2 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知某海濱浴場(chǎng)的海浪高度y(單位:米)與時(shí)間t(0≤t≤24)(單位:時(shí))的函數(shù)關(guān)系記作y=f(t),下表是某日各時(shí)的浪高數(shù)據(jù):
t(時(shí)) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
經(jīng)長(zhǎng)期觀測(cè),函數(shù)y=f(t)可近似地看成是函數(shù)。
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)的最小正周期T及函數(shù)表達(dá)式(其中A>0,ω>0);
(2)根據(jù)規(guī)定,當(dāng)海浪高度不低于0.75米時(shí),才對(duì)沖浪愛好者開放,請(qǐng)根據(jù)以上結(jié)論,判斷一天內(nèi)從上午7時(shí)至晚上19時(shí)之間,該浴場(chǎng)有多少時(shí)間可向沖浪愛好者開放
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知某海濱浴場(chǎng)的海浪高度(單位:米)與時(shí)間 (單位:時(shí))的函數(shù)關(guān)系記作,下表是某日各時(shí)的浪高數(shù)據(jù):
/時(shí) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
/米 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
經(jīng)長(zhǎng)期觀測(cè),函數(shù)可近似地看成是函數(shù).
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)的最小正周期T及函數(shù)表達(dá) 式(其中);
(2)根據(jù)規(guī)定,當(dāng)海浪高度不低于0.75米時(shí),才對(duì)沖浪愛好者開放,請(qǐng)根據(jù)以上結(jié)論,判斷一天內(nèi)從上午7時(shí)至晚上19時(shí)之間,該浴場(chǎng)有多少時(shí)間可向沖浪愛好者開放?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com