17.若m是方程ax2+bx+a=0(a≠0)的一個根,則這個方程的另一個根是$\frac{1}{m}$.

分析 方程ax2+bx+a=0(a≠0)是一元二次方程,由一元二次方程根與系數(shù)的關系可得:mk=1.

解答 解:由方程ax2+bx+a=0(a≠0)是一元二次方程,
設另一個根為k,
由一元二次方程根與系數(shù)的關系可得:mk=1,
∴k=$\frac{1}{m}$,
故答案為:$\frac{1}{m}$.

點評 本題主要考查了一元二次函數(shù)根與系數(shù)的關系,屬簡單題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.設A=(x1,y1,z1),B=(x2,y2,z2),則$\overrightarrow{AB}$=(x2-x1,y2-y1,z2-z1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖所示,四棱錐S-ABCD的底面是邊長為4$\sqrt{2}$的正方形,且SA=SB=SC=SD=4$\sqrt{5}$,則過點A,B,C,D,S的球的體積為( 。
A.$\frac{125}{3}π$B.$\frac{250}{3}$πC.$\frac{500}{3}π$D.$\frac{550}{3}π$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若函數(shù)f(x)=a|x-2|(a>0,a≠1),滿足f(1)=$\frac{1}{9}$,則f(x)的單調(diào)遞減區(qū)間是( 。
A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)y=$\frac{1}{1-x}$的圖象與函數(shù)y=2sinπx(-2≤x≤4)的圖象的交點為(x1,y1),(x2,y2),…,(xm,ym),則(x1+y1)+(x2+y2)+…+(xm+ym)=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知全集U=R,集合A={y|y=log2x,x>1},則∁UA=( 。
A.B.(0,+∞)C.(-∞,0]D.R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知數(shù)列{an}是等比數(shù)列,a1=1,a5=9,則a3等于( 。
A.-3B.3C.±3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在甲、乙兩個盒子中分別裝有標號為1,2,3,4的四張卡片,現(xiàn)從甲、乙兩個盒子中各取出1張卡片,每張卡片被取出的可能性相等;
(Ⅰ)求取出的兩張卡片標號之積能被3整除的概率;
(Ⅱ)如果小王、小李取出的兩張卡片的標號相加,誰的兩張卡片標號之和大則誰勝出,若小王先抽,抽出卡片的標號分別為3和4,且小王抽出的兩張卡片不再放回盒中,小李再抽;求小王勝出的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設點A(3,-1),B(-1,-4),直線過P(2,2)且與線段AB相交,則l的斜率k的取值范圍是( 。
A.-3≤k≤2B.k≥2或k≤-3C.-2≤k≤3D.k≥3或k≤-2

查看答案和解析>>

同步練習冊答案