如圖,在四棱錐V-ABCD中底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD
(1)證明:AB⊥平面VAD;
(2)求面VAD與面VDB所成的二面角的余弦值.
證明:(1)平面VAD⊥平面ABCD,AB⊥AD,AB?平面ABCD,
平面VAD∩平面ABCD=AD,∴AB⊥面VAD
(2)取VD中點E,連接AE,BE,∵△VAD是正三角形,∴AE⊥VD,AE=
3
2
AD

∵AB⊥面VAD,AE,VD?平面VAD
∴AB⊥VD,AB⊥AE∴AE⊥VD,AB⊥VD,AB∩AE=A,且AB,AE?平面ABE,D
VD⊥平面ABE,∵BE?平面ABE,∴BE⊥VD,
∴∠AEB即為所求的二面角的平面角.
在RT△ABE中,tan∠AEB=
AB
AE
=
2
3
3
,
cos∠AEB=
21
7
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,F(xiàn)D垂直于矩形ABCD所在平面,CEDF,∠DEF=90°.
(Ⅰ)求證:BE平面ADF;
(Ⅱ)若矩形ABCD的一個邊AB=
3
,EF=2
3
,則另一邊BC的長為何值時,三棱錐F-BDE的體積為
3
?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖所示,PA、PO分別是平面α的垂線、斜線,AO是PO在平面α內(nèi)的射影,且直線a?α,a⊥PO.求證:a⊥AO.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖(1)在正方形SG1G2G3中,E、F分別是邊G1G2、G2G3的中點,沿SE、SF及EF把這個正方形折成一個幾何體如圖(2),使G1,G2,G3三點重合于G,下面結(jié)論成立的是(  )
A.SG⊥平面EFGB.SD⊥平面EFGC.GF⊥平面SEFD.DG⊥平面SEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,AA1=AD=a,AB=2a,E、F分別為C1D1、A1D1的中點.
(Ⅰ)求證:DE⊥平面BCE;
(Ⅱ)求證:AF平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形.∠DAB=60°,AB=2AD,PD⊥底面
ABCD.
(Ⅰ)證明:PA⊥BD
(Ⅱ)設(shè)PD=AD=1,求棱錐D-PBC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

△ABC所在平面外一點P,分別連接PA、PB、PC,則這四個三角形中直角三角形最多有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為圓O的直徑,點C為圓O上異于A、B的一點,PA⊥平面ABC,點A在PB、PC上的射影分別為點E、F.
(1)求證:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱錐C-PAB的體積與此三棱錐的外接球(即點P、A、B、C都在此球面上)的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在四棱錐P-ABCD中,底面ABCD是菱形,∠BAD=60°AB=PA=2,PA⊥平面ABCD,E是PC的中點,F(xiàn)是AB的中點.
(1)求證:BE平面PDF;
(2)求證:平面PDF⊥平面PAB;
(3)求BE與平面PAC所成的角.

查看答案和解析>>

同步練習(xí)冊答案