【題目】為了調查民眾對國家實行新農村建設政策的態(tài)度,現(xiàn)通過網絡問卷隨機調查了年齡在20周歲至80周歲的100人,他們年齡頻數(shù)分布和支持新農村建設人數(shù)如下表:

年齡

頻數(shù)

10

20

30

20

10

10

支持新農村建設

3

11

26

12

6

2

1)根據(jù)上述統(tǒng)計數(shù)據(jù)填下面的列聯(lián)表,并判斷是否有的把握認為以50歲為分界點對新農村建設政策的支持度有差異;

年齡低于50歲的人數(shù)

年齡不低于50歲的人數(shù)

合計

支持

不支持

合計

2)現(xiàn)從年齡在內的5名被調查人中任選兩人去參加座談會,求選出兩人中恰有一人支持新農村建設的概率.

參考數(shù)據(jù):

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:,其中.

【答案】1列聯(lián)表見解析,沒有的把握(2

【解析】

1)根據(jù)已知數(shù)據(jù)填列聯(lián)表,利用公式計算3.8141比較大小.

2)列出從5人中任選兩人的基本事件數(shù),再找出其中恰有一人支持新農村建設的基本事件數(shù),可得所求概率.

1列聯(lián)表

年齡低于50歲的人數(shù)

年齡不低于50歲的人數(shù)

合計

支持

40

20

60

不支持

20

20

40

合計

60

40

100

,

所以沒有的把握認為以50歲為分界點對新農村建設政策的支持度有差異.

2)記年齡在內的5名被調查人分別為,,,,從中任選兩人,情況有種,

恰有一人支持的情況有種,

記事件選出兩人恰有一人支持新農村建設為,則.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面立角坐標系中,過點的圓的圓心軸上,且與過原點傾斜角為的直線相切.

(1)求圓的標準方程;

(2)在直線上,過點作圓的切線、,切點分別為、,求經過、、、四點的圓所過的定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設相互垂直的直線,分別過橢圓的左、右焦點,,且與橢圓的交點分別為、.

1)當的傾斜角為時,求以為直徑的圓的標準方程;

2)問是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“工資條里顯紅利,個稅新政人民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.201911日實施的個稅新政主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括住房、子女教育和贍養(yǎng)老人等.

新舊個稅政策下每月應納稅所得額(含稅)計算方法及其對應的稅率表如下:

舊個稅稅率表(個稅起征點3500)

新個稅稅率表(個稅起征點5000)

繳稅級數(shù)

每月應納稅所得額(含稅)=收入-個稅起征點

稅率(%)

每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除

稅率(%)

1

不超過1500元部分

3

不超過3000元部分

3

2

超過1500元至4500元部分

10

超過3000元至12000元部分

10

3

超過4500元至9000元的部分

20

超過12000元至25000元的部分

20

4

超過9000元至35000元的部分

25

超過25000元至35000元的部分

25

5

超過35000元至55000元部分

30

超過35000元至55000元部分

30

···

···

···

···

···

隨機抽取某市1000名同一收入層級的從業(yè)者的相關資料,經統(tǒng)計分析,預估他們2019年的人均月收入24000.統(tǒng)計資料還表明,他們均符合住房專項扣除;同時,他們每人至多只有一個符合子女教育扣除的孩子,并且他們之中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合贍養(yǎng)老人扣除的人數(shù)之比是2:1:1:1;此外,他們均不符合其他專項附加扣除.新個稅政策下該市的專項附加扣除標準為:住房1000/,子女教育每孩1000/,贍養(yǎng)老人2000/月等。

假設該市該收入層級的從業(yè)者都獨自享受專項附加扣除,將預估的該市該收入層級的從業(yè)者的人均月收入視為其個人月收入.根據(jù)樣本估計總體的思想,解決如下問題:

1)設該市該收入層級的從業(yè)者2019年月繳個稅為,的分布列和期望;

2)根據(jù)新舊個稅方案,估計從20191月開始,經過多少個月,該市該收入層級的從業(yè)者各月少繳交的個稅之和就超過2019年的月收入?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),給出下列命題,其中正確命題的個數(shù)為

①當時,上單調遞增;

②當時,存在不相等的兩個實數(shù),使;

③當時,3個零點.

A. 3B. 2C. 1D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為F,過F點的直線交拋物線于不同的兩點A、B,且,點A關于軸的對稱點為,線段的中垂線交軸于點D,則D點的坐標為

A. (2,0)B. (3,0)C. (4,0)D. (5,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)與函數(shù)在點處有共同的切線,求的值;

(2)證明:;

(3)若不等式對所有都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線y=1+與直線y=k(x-2)+4有兩個交點,則實數(shù)k的取值范圍是( )

A. (,+∞)B. (,]C. (0,)D. (,]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓的離心率為,橢圓上一點到左右兩個焦點的距離之和是4.

(1)求橢圓的方程;

(2)已知過的直線與橢圓交于兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值。

查看答案和解析>>

同步練習冊答案