已知向量,定義f(x)=
(1)求函數(shù)f(x)的表達(dá)式,并求其單調(diào)增區(qū)間;
(2)在銳角△ABC中,角A、B、C對(duì)邊分別為a、b、c,且f(A)=1,bc=8,求△ABC的面積.
【答案】分析:(1)通過(guò)向量的數(shù)量積,二倍角的三角函數(shù)求函數(shù)f(x)的表達(dá)式,通過(guò)正弦函數(shù)的單調(diào)增區(qū)間求其單調(diào)增區(qū)間;
(2)利用f(A)=1,求出A的值,利用bc=8,通過(guò)△ABC的面積公式求解即可.
解答:解:(1)因?yàn)橐阎蛄?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025123608484234080/SYS201310251236084842340015_DA/0.png">,
f(x)==2sin2x-cos2x=sin(2x-)…(3分)
令2kπ-≤2x-≤2kπ+,k∈Z,
解得kπ-≤x≤kπ+
所以,函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-,kπ+],k∈Z.…(6分)
(2)∵f(A)=1,
sin(2A-)=1,
∴2A-=2Kπ+
∴A=kπ,又△ABC為銳角三角形,
則A=,又bc=8,
則△ABC的面積S=bcsinA=×8×=2.…(12分)
點(diǎn)評(píng):題考查了平面向量的數(shù)量積運(yùn)算,二倍角的正弦函數(shù)公式,兩角和與差的正弦函數(shù)公式,正弦函數(shù)的定義域與值域,三角形的面積公式,以及特殊角的三角函數(shù)值,熟練掌握公式及法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
3
, sin(x-
π
12
))
,
b
=(sin(2x-
π
6
) , 2sin(x-
π
12
))
,
c
=(-
π
4
, 0)
.定義函數(shù)f(x)=
a
b

(1)求函數(shù)f(x)的表達(dá)式;
(2)將函數(shù)f(x)的圖象沿
c
方向移動(dòng)后,再將其各點(diǎn)橫坐標(biāo)變?yōu)樵瓉?lái)的2倍得到y(tǒng)=g(x)的圖象,求y=g(x)的單調(diào)遞減區(qū)間及g(x)取得最大值時(shí)所有x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省亳州市渦陽(yáng)四中高三(上)第五次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知向量,定義函數(shù)
(Ⅰ)求函數(shù)f(x)的表達(dá)式,并指出其最大最小值;
(Ⅱ)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且f(A)=1,bc=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省中山市廣外大附設(shè)中山外語(yǔ)學(xué)校高三(上)數(shù)學(xué)寒假作業(yè)1(文科)(解析版) 題型:解答題

已知向量,定義函數(shù)
(Ⅰ)求函數(shù)f(x)的表達(dá)式,并指出其最大最小值;
(Ⅱ)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且f(A)=1,bc=8,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量數(shù)學(xué)公式,定義f(x)=數(shù)學(xué)公式
(1)求函數(shù)f(x)的表達(dá)式,并求其單調(diào)增區(qū)間;
(2)在銳角△ABC中,角A、B、C對(duì)邊分別為a、b、c,且f(A)=1,bc=8,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案