在1,2,3,…,2006中隨機(jī)選取三個(gè)數(shù),這三個(gè)數(shù)能構(gòu)成遞增等差數(shù)列的概率等于
 
考點(diǎn):古典概型及其概率計(jì)算公式,等差數(shù)列
專題:概率與統(tǒng)計(jì)
分析:在1,2,3,…,2006中隨機(jī)選取三個(gè)數(shù),基本事件總數(shù)n=
C
3
2006
,這三個(gè)數(shù)能構(gòu)成遞增等差數(shù)列基本事件個(gè)數(shù):
m=1002+1002+1001+1001+…1+1,由此能求出這三個(gè)數(shù)能構(gòu)成遞增等差數(shù)列的概率.
解答: 解:在1,2,3,…,2006中隨機(jī)選取三個(gè)數(shù),
基本事件總數(shù)n=
C
3
2006
=1343358020,
這三個(gè)數(shù)能構(gòu)成遞增等差數(shù)列基本事件個(gè)數(shù):
m=1002+1002+1001+1001+…1+1=2×
(1002+1)•1002
2
=1005006,
∴這三個(gè)數(shù)能構(gòu)成遞增等差數(shù)列的概率:
P=
10051006
1343358020
≈0.0000075.
故答案為:0.0000075.
點(diǎn)評(píng):本題考查概率的求法,是中檔題,解題時(shí)要注意古典概型概率計(jì)算公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)切圓的三邊AB,BC,CA的切點(diǎn)分別為D,E,F(xiàn),已知B(-
2
,0),C(
2
,0),內(nèi)切圓圓心為I(1,t)(t≠0),設(shè)點(diǎn)A的軌跡為L.
(1)求L的方程;
(2)設(shè)直線y=2x+m交曲線L于不同的兩點(diǎn)M,N,當(dāng)|MN|=2
5
時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條直線l上有相異三個(gè)點(diǎn)A、B、C到平面α的距離相等,那么直線l與平面α的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD-A1B1C1D1為正方體,下面結(jié)論中正確的是
 

①BD∥平面CB1D1;
②AC1⊥平面CB1D1
③AC1與底面ABCD所成角的正切值是
2
;
④CB1與BD為異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長方體的一個(gè)頂點(diǎn)上三條棱長分別是3、4、5,則其體對(duì)角線長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行六面體ABCD-A1B1C1D1.AC1分別與平面A1BD、平面CB1D1交于E,F(xiàn)兩點(diǎn).給出以下命題:
①平面A1BD∥平面CB1D1
②若∠A1AD=∠A1AB=∠DAB,AD=AB=AA1,則直線A1D與CD1所成角為
π
3
;
③點(diǎn)E,F(xiàn)為線段AC1的兩個(gè)三等分點(diǎn);
④E為△A1BD的內(nèi)心.
其中真命題的序號(hào)是
 
(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從長方體一個(gè)頂點(diǎn)出發(fā)的三個(gè)面的面積分別為6、8、12,則其體對(duì)角線長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)右焦點(diǎn)F的一條直線與該雙曲線有且只有一個(gè)交點(diǎn),且交點(diǎn)的橫坐標(biāo)為2a,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(3-x)ex的單調(diào)遞增區(qū)間是( 。
A、(2,+∞)
B、(3,+∞)
C、(-∞,3)
D、(-∞,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案