【題目】在全球抗擊新冠肺炎疫情期間,我國醫(yī)療物資生產(chǎn)企業(yè)加班加點(diǎn)生產(chǎn)口罩、防護(hù)服、消毒水等防疫物品,保障抗疫一線醫(yī)療物資供應(yīng),在國際社會上贏得一片贊譽(yù).我國某口罩生產(chǎn)企業(yè)在加大生產(chǎn)的同時,狠抓質(zhì)量管理,不定時抽查口罩質(zhì)量,該企業(yè)質(zhì)檢人員從所生產(chǎn)的口罩中隨機(jī)抽取了100個,將其質(zhì)量指標(biāo)值分成以下六組:,,,…,,得到如下頻率分布直方圖.
(1)求出直方圖中的值;
(2)利用樣本估計(jì)總體的思想,估計(jì)該企業(yè)所生產(chǎn)的口罩的質(zhì)量指標(biāo)值的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表,中位數(shù)精確到0.01);
(3)現(xiàn)規(guī)定:質(zhì)量指標(biāo)值小于70的口罩為二等品,質(zhì)量指標(biāo)值不小于70的口罩為一等品.利用分層抽樣的方法從該企業(yè)所抽取的100個口罩中抽出5個口罩,并從中再隨機(jī)抽取2個作進(jìn)一步的質(zhì)量分析,試求這2個口罩中恰好有1個口罩為一等品的概率.
【答案】(1)(2)平均數(shù)為71,中位數(shù)為73.33(3)
【解析】
(1)根據(jù)頻率分布直方圖中各小矩形面積和為1,即可求得的值;
(2)由平均數(shù)與中位數(shù)的求法,結(jié)合頻率分布直方圖即可得解.
(3)由分層抽樣性質(zhì)可分別求得抽取的5個口罩中一等品、二等品的數(shù)量,利用列舉法列舉出抽取2個口罩的所有情況,即可求得2個口罩中恰好有1個口罩為一等品的概率.
(1)由,
得.
(2)平均數(shù)為,
設(shè)中位數(shù)為,
則,得.
故可以估計(jì)該企業(yè)所生產(chǎn)口罩的質(zhì)量指標(biāo)值的平均數(shù)為71,中位數(shù)為73.33.
(3)由頻率分布直方圖可知:100個口罩中一等品、二等品各有60個、40個,
由分層抽樣可知,所抽取的5個口罩中一等品、二等品各有3個、2個.
記這3個一等品為,,,2個二等品為,,則從5個口罩中抽取2個的可能結(jié)果有:,,,,,,,,,,共10種,
其中恰有1個口罩為一等品的可能結(jié)果有:,,,,,.共6種.
故這2個口罩中恰好有1個口罩為一等品的概率為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,分別為,的中點(diǎn)是由繞直線旋轉(zhuǎn)得到,連結(jié),,.
(1)證明:平面;
(2)若,棱上是否存在一點(diǎn),使得?若存在,確定點(diǎn) 的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是拋物線的焦點(diǎn),是其準(zhǔn)線上任意一點(diǎn),過點(diǎn)作直線,與拋物線相切,,為切點(diǎn),,與軸分別交于,兩點(diǎn).
(1)求焦點(diǎn)的坐標(biāo),并證明直線過點(diǎn);
(2)求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國際上常用的衡量人體胖瘦程度以及是否健康的一個標(biāo)準(zhǔn).對于高中男體育特長生而言,當(dāng)數(shù)值大于或等于20.5時,我們說體重較重,當(dāng)數(shù)值小于20.5時,我們說體重較輕,身高大于或等于我們說身高較高,身高小于170cm我們說身高較矮.
(Ⅰ)已知某高中共有32名男體育特長生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對指數(shù)有影響.
身高較矮 | 身高較高 | 合計(jì) | |
體重較輕 | |||
體重較重 | |||
合計(jì) |
(Ⅱ)①從上述32名男體育特長生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
身高 | 166 | 167 | 160 | 173 | 178 | 169 | 158 | 173 |
體重 | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請完善下列殘差表,并求(解釋變量(身高)對于預(yù)報變量(體重)變化的貢獻(xiàn)值)(保留兩位有效數(shù)字);
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
體重(kg) | 57 | 58 | 53 | 61 | 66 | 57 | 50 | 66 |
殘差 |
②通過殘差分析,對于殘差的最大(絕對值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯誤,已知通過重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.小明重新根據(jù)最小二乘法的思想與公式,已算出,請?jiān)谛∶魉愕幕A(chǔ)上求出男體育特長生的身高與體重的線性回歸方程.
參考數(shù)據(jù):
,,,,
參考公式:,,,,.
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.811 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)當(dāng)時,求函數(shù)圖象在處的切線方程;
(2)若對任意,不等式恒成立,求的取值范圍;
(3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】英國統(tǒng)計(jì)學(xué)家E.H.辛普森1951年提出了著名的辛普森悖論,下面這個案例可以讓我們感受到這個悖論.有甲乙兩名法官,他們都在民事庭和行政庭主持審理案件,他們審理的部分案件被提出上訴.記錄這些被上述案件的終審結(jié)果如下表所示(單位:件):
法官甲 | 法官乙 | ||||||
終審結(jié)果 | 民事庭 | 行政庭 | 合計(jì) | 終審結(jié)果 | 民事庭 | 行政庭 | 合計(jì) |
維持 | 29 | 100 | 129 | 維持 | 90 | 20 | 110 |
推翻 | 3 | 18 | 21 | 推翻 | 10 | 5 | 15 |
合計(jì) | 32 | 118 | 150 | 合計(jì) | 100 | 25 | 125 |
記甲法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,和,記乙法官在民事庭、行政庭以及所有審理的案件被維持原判的比率分別為,和,則下面說法正確的是
A. ,,B. ,,
C. ,,D. ,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,∠ABC=60°,AA1AB,M,N分別為AB,AA1的中點(diǎn).
(1)求證:平面B1NC⊥平面CMN;
(2)若AB=2,求點(diǎn)N到平面B1MC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,過點(diǎn),且該橢圓的短軸端點(diǎn)與兩焦點(diǎn),的張角為直角.
(1)求橢圓E的方程;
(2)過點(diǎn)且斜率大于0的直線與橢圓E相交于點(diǎn)P,Q,直線AP,AQ與y軸相交于M,N兩點(diǎn),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com