已知橢圓過點,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點且斜率為()的直線與橢圓相交于兩點,直線、分別交直線 于、兩點,線段的中點為.記直線的斜率為,求證: 為定值.
(Ⅰ);(Ⅱ)
解析試題分析:(Ⅰ)根據條件可得以下方程組: ,解這個方程組求出、的值便得橢圓的方程;(Ⅱ)將用表示出來,這樣就是一個只含的式子,將該式化簡即可.那么如何用來表示?
設,.因為A(2,0),所以直線的方程分別為:.
令得:所以的中點為:
由此得直線的斜率為:
①
再設直線的方程為,代入橢圓方程得:
設,,則由韋達定理得:代入①式,便可將用
表示出來,從而得到的值.
試題解析:(Ⅰ)由題設: ,解之得,所以橢圓的方程為 4分
(Ⅱ)設直線的方程為代入橢圓方程得:
設,,則由韋達定理得:
直線的方程分別為:
令,得:所以
13分
考點:1、橢圓及其方程;2、直線的方程;3、中點坐標公式;4、根與系數的關系.
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線:和⊙:,過拋物線上一點作兩條直線與⊙相切于、兩點,分別交拋物線為E、F兩點,圓心點到拋物線準線的距離為.
(1)求拋物線的方程;
(2)當的角平分線垂直軸時,求直線的斜率;
(3)若直線在軸上的截距為,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知圓和圓.
(1)若直線過點,且被圓截得的弦長為,求直線的方程;
(2)設為平面上的點,滿足:存在過點的無窮多對互相垂直的直線和,它們分別與圓和圓相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的焦點為F2,點F1與F2關于坐標原點對稱,以F1,F2為焦點的橢圓C過點.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設點,過點F2作直線與橢圓C交于A,B兩點,且,若的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的一個頂點為,焦點在軸上,若右焦點到直線的距離為3.
(1)求橢圓的標準方程;
(2)設直線與橢圓相交于不同的兩點、,當時,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
知橢圓的離心率為,定點,橢圓短軸的端點是,且.
(1)求橢圓的方程;
(2)設過點且斜率不為0的直線交橢圓于兩點.試問軸上是否存在異于的定點,使平分?若存在,求出點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知經過點A(-4,0)的動直線l與拋物線G:相交于B、C,當直線l的斜率是時,.
(Ⅰ)求拋物線G的方程;
(Ⅱ)設線段BC的垂直平分線在y軸上的截距為b,求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的離心率為,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有=+成立?若存在,求出所有的P的坐標與l的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com