【題目】在四棱錐P-ABCD中,平面ABCD,,,,,E為PD的中點(diǎn),點(diǎn)F在PC上,且.
(1)求證:平面平面PAD;
(2)求二面角F-AE-P的余弦值.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)先證明,然后可證明平面PAD,從而得證面面垂直;
(2)過(guò)點(diǎn)A作AD的垂線(xiàn)交BC于點(diǎn)M.以為軸建立空間直角坐標(biāo)系,用空間向量法求得二面角.
(1)證明:因?yàn)?/span>平面ABCD,平面ABCD,所以.
又因?yàn)?/span>,,平面PAD,所以平面PAD.
又平面PCD,所以平面平面PAD.
(2)過(guò)點(diǎn)A作AD的垂線(xiàn)交BC于點(diǎn)M.因?yàn)?/span>平面ABCD,平面ABCD,
所以,.建立如圖所示的空間直角坐標(biāo)系,
則,,,,.因?yàn)?/span>E為PD的中點(diǎn),所以.
所以,,,所以,
所以.設(shè)平面AEF的法向量為,則
,令,則,.于是.
又因?yàn)槠矫?/span>PAD的一個(gè)法向量為,所以.
由題知,二面角為銳角,所以其余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形面積為,,,為三角形三邊長(zhǎng),為三角形內(nèi)切圓半徑,利用類(lèi)比推理,可以得出四面體的體積為( )
A.
B.
C. (為四面體的高)
D. (其中,,,分別為四面體四個(gè)面的面積,為四面體內(nèi)切球的半徑,設(shè)四面體的內(nèi)切球的球心為,則球心到四個(gè)面的距離都是)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,左頂點(diǎn)為,過(guò)橢圓的右焦點(diǎn)作互相垂直的兩條直線(xiàn)和,分別交直線(xiàn)于,兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積的最小值;
(Ⅲ)設(shè)直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為,橢圓的右頂點(diǎn)為,求證:,,三點(diǎn)共線(xiàn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),其右焦點(diǎn)為,以坐標(biāo)原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)經(jīng)過(guò)點(diǎn)的直線(xiàn),分別交橢圓于,及,四點(diǎn),且,探究:是否存在常數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)是正整數(shù).在一個(gè)十進(jìn)制位數(shù)的各位數(shù)字中,若含有數(shù)字8,則在每個(gè)數(shù)字8的前一位數(shù)字就不能是數(shù)字3(即不能出現(xiàn)38字樣).試求出所有這樣的位數(shù)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“吸煙有害健康,吸煙會(huì)對(duì)身體造成傷害”,哈爾濱市于2012年5月31日規(guī)定室內(nèi)場(chǎng)所禁止吸煙.美國(guó)癌癥協(xié)會(huì)研究表明,開(kāi)始吸煙年齡X分別為16歲、18歲、20歲和22歲者,其得肺癌的相對(duì)危險(xiǎn)度Y依次為15.10,12.81,9.72,3.21;每天吸煙支數(shù)U分別為10,20,30者,其得肺癌的相對(duì)危險(xiǎn)度V分別為7.5,9.5和16.6,用表示變量X與Y之間的線(xiàn)性相關(guān)系數(shù),用r2表示變量U與V之間的線(xiàn)性相關(guān)系數(shù),則下列說(shuō)法正確的是( )
A.r1=r2B.r1>r2>0
C.0<r1<r2D.r1<0<r2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接2022年北京冬季奧運(yùn)會(huì),普及冬奧知識(shí),某校開(kāi)展了“冰雪答題王”冬奧知識(shí)競(jìng)賽活動(dòng).現(xiàn)從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(jī)(滿(mǎn)分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(Ⅰ)求的值;
(Ⅱ)記表示事件“從參加冬奧知識(shí)競(jìng)賽活動(dòng)的學(xué)生中隨機(jī)抽取一名學(xué)生,該學(xué)生的比賽成績(jī)不低于80分”,估計(jì)的概率;
(Ⅲ)在抽取的100名學(xué)生中,規(guī)定:比賽成績(jī)不低于80分為“優(yōu)秀”,比賽成績(jī)低于80分為“非優(yōu)秀”.請(qǐng)?jiān)诖痤}卡上將列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“比賽成績(jī)是否優(yōu)秀與性別有關(guān)”?
參考公式及數(shù)據(jù):,.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xln x-aex(e為自然對(duì)數(shù)的底數(shù))有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A. B.(0,e)
C. D.(-∞,e)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com