【題目】據(jù)不完全統(tǒng)計(jì),某廠的生產(chǎn)原料耗費(fèi)(單位:百萬元)與銷售額(單位:百萬元)如下:
2 | 4 | 6 | 8 | |
30 | 40 | 50 | 70 |
變量、為線性相關(guān)關(guān)系.
(1)求線性回歸方程必過的點(diǎn);
(2)求線性回歸方程;
(3)若實(shí)際銷售額要求不少于百萬元,則原材料耗費(fèi)至少要多少百萬元。
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題為真命題的是( )
A.若為真命題,則為真命題;
B.“”是“”的充分不必要條件;
C.命題“若,則”的否命題為“若,則”;
D.已知命題,使得,則,使得。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù),其中是常數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若存在實(shí)數(shù),使得關(guān)于的方程在上有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的單調(diào)函數(shù)是奇函數(shù),當(dāng)時(shí),.
(1)求的解析式.
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程: (為參數(shù)),曲線的參數(shù)方程: (為參數(shù)),且直線交曲線于兩點(diǎn).
(1)將曲線的參數(shù)方程化為普通方程,并求時(shí), 的長度;
(2)巳知點(diǎn),求當(dāng)直線傾斜角變化時(shí), 的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),設(shè),,滿足恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)上的單調(diào)函數(shù)f(x),x∈(0,+∞),f[f(x)﹣lnx]=1,則方程f(x)﹣f′(x)=1的解所在區(qū)間是 ( 。
A. (2,3) B. C. D. (1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)貿(mào)公司按每擔(dān)200元的價(jià)格收購某農(nóng)產(chǎn)品,并按每100元納稅10元(又稱征稅率為10個(gè)百分點(diǎn))進(jìn)行納稅,計(jì)劃可收購萬擔(dān),政府為了鼓勵(lì)收購公司多收購這種農(nóng)產(chǎn)品,決定將征稅降低()個(gè)百分點(diǎn),預(yù)測收購量可增加個(gè)百分點(diǎn).
(1)寫出稅收(萬元)與的函數(shù)關(guān)系式;
(2)要使此項(xiàng)稅收在稅率調(diào)整后不少于原計(jì)劃稅收的,試確定的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com