【題目】曲線的右焦點(diǎn)分別為,短袖長(zhǎng)為,點(diǎn)在曲線上,直線上,且.
(1)求曲線的標(biāo)準(zhǔn)方程;
(2)試通過計(jì)算判斷直線與曲線公共點(diǎn)的個(gè)數(shù).
(3)若點(diǎn)在都在以線段為直徑的圓上,且,試求的取值范圍.
【答案】(1)(2)只有一個(gè)公共點(diǎn)(3)
【解析】
(1)根據(jù)橢圓的幾何性質(zhì),列出方程組,求得的值,即可得到橢圓的標(biāo)準(zhǔn)方程;
(2)由,根據(jù)向量的數(shù)量積公式可得的縱坐標(biāo),取得直線的直線方程,
即可作出判定,得到答案;
(3)由得到,進(jìn)而得打不等式,即可求解.
(1)由曲線的右焦點(diǎn)分別為,短袖長(zhǎng)為,所以,解得,所以曲線的標(biāo)準(zhǔn)方程為:
(2)由在,
可得,解得,所以,
設(shè),則
又由,則,
即,解得,所以,
所以
若,則,
由,解得,
知道直線與曲線相切,只有一個(gè)公共點(diǎn);
若,同理可知直線與曲線相切,只有一個(gè)公共點(diǎn);
(3)因?yàn)?/span>,
即,所以
所以,
又,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國鐵路總公司相關(guān)負(fù)責(zé)人表示,到2018年底,全國鐵路營業(yè)里程達(dá)到13.1萬公里,其中高鐵營業(yè)里程2.9萬公里,超過世界高鐵總里程的三分之二,下圖是2014年到2018年鐵路和高鐵運(yùn)營里程(單位:萬公里)的折線圖,以下結(jié)論不正確的是( )
A.每相鄰兩年相比較,2014年到2015年鐵路運(yùn)營里程增加最顯著
B.從2014年到2018年這5年,高鐵運(yùn)營里程與年價(jià)正相關(guān)
C.2018年高鐵運(yùn)營里程比2014年高鐵運(yùn)營里程增長(zhǎng)80%以上
D.從2014年到2018年這5年,高鐵運(yùn)營里程數(shù)依次成等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,且點(diǎn)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于其頂點(diǎn)的任意一點(diǎn)Q作圓的兩條切線,切點(diǎn)分別為不在坐標(biāo)軸上),若直線在x軸,y軸上的截距分別為,證明:為定值;
(3)若是橢圓上不同兩點(diǎn),軸,圓E過,且橢圓上任意一點(diǎn)都不在圓E內(nèi),則稱圓E為該橢圓的一個(gè)內(nèi)切圓,試問:橢圓是否存在過焦點(diǎn)F的內(nèi)切圓?若存在,求出圓心E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了應(yīng)對(duì)金融危機(jī),決定適當(dāng)進(jìn)行裁員,已知這家公司現(xiàn)有職工人(,且為10的整數(shù)倍),每人每年可創(chuàng)利100千元,據(jù)測(cè)算,在經(jīng)營條件不變的前的提下,若裁員人數(shù)不超過現(xiàn)有人數(shù)的30%,則每裁員1人,留崗員工每人每年就能多創(chuàng)利1千元(即若裁員人,留崗員工可多創(chuàng)利潤(rùn)千元);若裁員人數(shù)超過現(xiàn)有人數(shù)的30%,則每裁員1人,留崗員工每人每年就能多創(chuàng)利2千元(即若裁員人,留崗員工可多創(chuàng)利潤(rùn)千元),為保證公司的正常運(yùn)轉(zhuǎn),留崗的員工數(shù)不得少于現(xiàn)有員工人數(shù)的50%,為了保障被裁員工的生活,公司要付給被裁員工每人每年20千元的生活費(fèi).
(1)設(shè)公司裁員人數(shù)為,寫出公司獲得的經(jīng)濟(jì)效益(千元)關(guān)于的函數(shù)(經(jīng)濟(jì)效益=在職人員創(chuàng)利總額—被裁員工生活費(fèi));
(2)為了獲得最大的經(jīng)濟(jì)效益,該公司應(yīng)裁員多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,且,且.
(1)若,試判斷的奇偶性;
(2)若,,,證明的圖像是軸對(duì)稱圖形,并求出對(duì)稱軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家質(zhì)量監(jiān)督檢驗(yàn)檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗(yàn)》國家標(biāo)準(zhǔn).新標(biāo)準(zhǔn)規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于毫克/百毫升,小于毫克/百毫升為飲酒駕車,血液中的酒精含量大于或等于毫克/百毫升為醉酒駕車.經(jīng)過反復(fù)試驗(yàn),喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”如下圖,該函數(shù)近似模型如下:.
又已知?jiǎng)偤眠^1小時(shí)時(shí)測(cè)得酒精含量值為毫克/百毫升.根據(jù)上述條件,解答以下問題:
(1)試計(jì)算喝1瓶啤酒多少小時(shí)血液中的酒精含量達(dá)到最大值?最大值是多少?
(2)試計(jì)算喝1瓶啤酒后多少小時(shí)后才可以駕車?(時(shí)間以整分鐘計(jì)算)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某環(huán)線地鐵按內(nèi)、外環(huán)線同時(shí)運(yùn)行,內(nèi)、外環(huán)線的長(zhǎng)均為30千米(忽略內(nèi)、外環(huán)線長(zhǎng)度差異).
(1)當(dāng)9列列車同時(shí)在內(nèi)環(huán)線上運(yùn)行時(shí),要使內(nèi)環(huán)線乘客最長(zhǎng)候車時(shí)間為10分鐘,求內(nèi)環(huán)線列車的最小平均速度;
(2)新調(diào)整的方案要求內(nèi)環(huán)線列車平均速度為25千米/小時(shí),外環(huán)線列車平均速度為30千米/小時(shí).現(xiàn)內(nèi)、外環(huán)線共有18列列車全部投入運(yùn)行,要使內(nèi)外環(huán)線乘客的最長(zhǎng)候車時(shí)間之差不超過1分鐘,向內(nèi)、外環(huán)線應(yīng)各投入幾列列車運(yùn)行?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,為兩非零有理數(shù)列(即對(duì)任意的,均為有理數(shù)),為一無理數(shù)列(即對(duì)任意的,為無理數(shù)).
(1)已知,并且對(duì)任意的恒成立,試求的通項(xiàng)公式.
(2)若為有理數(shù)列,試證明:對(duì)任意的,恒成立的充要條件為.
(3)已知,,對(duì)任意的,恒成立,試計(jì)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系上放置一個(gè)邊長(zhǎng)為1的正方形,此正方形沿軸滾動(dòng)(向左或向右均可),滾動(dòng)開始時(shí),點(diǎn)位于原點(diǎn)處,設(shè)頂點(diǎn)的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式,,該函數(shù)相鄰兩個(gè)零點(diǎn)之間的距離為.
(1)寫出的值并求出頂點(diǎn)到的最小運(yùn)動(dòng)路徑的長(zhǎng)度的值;
(2)寫出函數(shù),,的表達(dá)式;并研究該函數(shù)除周期外的基本性質(zhì)(無需證明).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com