【題目】已知定義在正實數(shù)集上的函數(shù),其中,設兩曲線有公共點,且在公共點處的切線相同.

(1)若,求實數(shù)的值;

(2)用表示,并求實數(shù)的最大值.

【答案】(1);(2)

【解析】試題分析:(1)設y=f(x)與y=g(x)(x>0)在公共點(x0,y0)處的切線相同,先利用導數(shù)求出在切點處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率.最后利用兩直線重合列出等式即可求得b值;(2)利用(1)類似的方法,利用a的表達式來表示b,然后利用導數(shù)來研究b的最大值,研究此函數(shù)的最值問題,先求出函數(shù)的極值,結合函數(shù)的單調(diào)性,最后確定出最大值與最小值即得.

試題解析:

(1)設在公共點處的切線相同

,

由題意知

,

得, ,或(舍去)

即有.

2在公共點處的切線相同

,

由題意知

,

得, ,或(舍去),

即有

,則,

于是當,即時, ;

,即時, ,

的最大值為,故的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

討論函數(shù)的單調(diào)性;

的兩個零點是, ,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】與圓(x﹣3)2+(y﹣3)2=8相切,且在x、y軸上截距相等的直線有(
A.4條
B.3條
C.2條
D.1條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)既有一個極小值又有一個極大值,求的取值范圍;

3)若存在,使得當時, 的值域是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】多面體, , , , , , 在平面上的射影是線段的中點.

(1)求證:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圓x2+y2﹣2x+4y+3=0的圓心到直線x﹣y=1的距離為:( )
A.2
B.
C.1
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某老師對全班名學生學習積極性和參加社團活動情況進行調(diào)查,統(tǒng)計數(shù)據(jù)如下所示:

參加社團活動

不參加社團活動

合計

學習積極性高

學習積極性一般

合計

(1)請把表格數(shù)據(jù)補充完整;

(2)若從不參加社團活動的人按照分層抽樣的方法選取人,再從所選出的人中隨機選取兩人作為代表發(fā)言,求至少有一個學習積極性高的概率;

(3)運用獨立性檢驗的思想方法分析:請你判斷是否有的把握認為學生的學習積極性與參與社團活動由關系?

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,橢圓 )的離心率是,拋物線 的焦點的一個頂點.

1)求橢圓的方程;

2)設上動點,且位于第一象限, 在點處的切線交于不同的兩點, ,線段的中點為,直線與過且垂直于軸的直線交于點

i)求證:點在定直線上;

ii)直線軸交于點,記的面積為 的面積為,求的最大值及取得最大值時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為一簡單組合體,其底面 ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)求證:BE∥平面PDA;
(2)求四棱錐B﹣CEPD的體積.

查看答案和解析>>

同步練習冊答案