【題目】如圖,在三棱柱中,,頂點(diǎn)在底面上的射影恰為點(diǎn),且

1)證明:平面平面

2)求棱所成的角的大;

3)若點(diǎn)的中點(diǎn),并求出二面角的平面角的余弦值.

【答案】1)證明見解析;(2;(3

【解析】

試題(1)因?yàn)轫旤c(diǎn)在在底面上的的射影恰好為得到,又,利用線面垂直的判定定理可得平面平面;(2)建立空間直角坐標(biāo)系,求出,,利用向量的數(shù)量積公式求出棱所成的角的大;(3)求出平面的法向量,而平面的法向量,利用向量的數(shù)列積公式求解二面角的余弦值.

試題解析:(1)證明:,,又,,,

2)以A為原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,

,,,

,

,

與棱所成的角是

3)因?yàn)?/span>為棱的中點(diǎn),故易求得.設(shè)平面的法向量為,

,由,得,令,則

而平面的法向量.則

由圖可知二面角為銳角,故二面角的平面角的余弦值是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是奇函數(shù),

(1)求實(shí)數(shù)m的值;

(2)判斷函數(shù)的單調(diào)性并用定義法加以證明;

(3)若函數(shù)上的最小值為,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題恒成立;命題方程表示雙曲線.

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若命題“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).若曲線和曲線都過點(diǎn),且在點(diǎn)處有相同的切線.

(Ⅰ)求的值;

(Ⅱ)若時(shí), ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)正方體圖形中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,P分別為其所在棱的中點(diǎn),能得出AB∥平面MNP的圖形的個(gè)數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,經(jīng)統(tǒng)計(jì)知年份x和儲蓄

存款y (千億元)具有線性相關(guān)關(guān)系,下表是該地某銀行連續(xù)五年的儲蓄存款(年底余額),

如下表(1):

年份x

2014

2015

2016

2017

2018

儲蓄存款y(千億元)

5

6

7

8

10

表(1

為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,令

得到下表(2):

時(shí)間代號t

1

2

3

4

5

0

1

2

3

5

表(2

(1)由最小二乘法求關(guān)于t的線性回歸方程;

(2)通過(1)中的方程,求出y關(guān)于x的線性回歸方程;

(3)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達(dá)多少?

(附:對于一組數(shù)據(jù)(u1,v1)(u2,v2),…,(un,vn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線為

)若直線的斜率為,求函數(shù)的單調(diào)區(qū)間.

)若函數(shù)是區(qū)間上的單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查觀眾對電視劇《風(fēng)箏》的喜愛程度,某電視臺舉辦了一次現(xiàn)場調(diào)查活動.在參加此活動的甲、乙兩地觀眾中,各隨機(jī)抽取了8名觀眾對該電視劇評分做調(diào)查(滿分100分),被抽取的觀眾的評分結(jié)果如圖所示

(Ⅰ)計(jì)算:①甲地被抽取的觀眾評分的中位數(shù);

②乙地被抽取的觀眾評分的極差;

(Ⅱ)用頻率估計(jì)概率,若從乙地的所有觀眾中再隨機(jī)抽取4人進(jìn)行評分調(diào)查,記抽取的4人評分不低于90分的人數(shù)為,求的分布列與期望;

)從甲、乙兩地分別抽取的8名觀眾中各抽取一人,在已知兩人中至少一人評分不低于90分的條件下,求乙地被抽取的觀眾評分低于90分的概率.

查看答案和解析>>

同步練習(xí)冊答案