【題目】已知點(diǎn)為圓上一動點(diǎn),軸于點(diǎn),若動點(diǎn)滿足(其中為非零常數(shù))

(1)求動點(diǎn)的軌跡方程;

(2)當(dāng)時,得到動點(diǎn)的軌跡為曲線,斜率為1的直線與曲線相交于兩點(diǎn),求面積的最大值.

【答案】(1)(2)

【解析】試題分析:(1)根據(jù)條件用Q點(diǎn)坐標(biāo)表示A點(diǎn)坐標(biāo),再代入化簡可得的軌跡方程;(2)設(shè)直線的方程為,根據(jù)點(diǎn)到直線距離公式可得三角形的高,聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理及弦長公式可得三角形底邊邊長,再根據(jù)三角形面積公式可得,最后根據(jù)基本不等式求最大值

試題解析:解:()設(shè)動點(diǎn),則,且,①

,得,

代入得動點(diǎn)的軌跡方程為

(Ⅱ)當(dāng)時,動點(diǎn)的軌跡曲線

設(shè)直線的方程為,代入中,

,

,∴,

設(shè),,

點(diǎn)到直線的距離,,

,

當(dāng)且僅當(dāng),即時取到最大值.

面積的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;

(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知7cos2α﹣sinαcosα﹣1=0,α∈( , ),求cos2α和 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為測量山高M(jìn)N,選擇A和另一座山的山頂C為測量觀測點(diǎn).從A點(diǎn)測得 M點(diǎn)的仰角∠MAN=60°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測得∠MCA=60°.已知山高BC=100m,則山高M(jìn)N=m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x),g(x)都是定義在R上的函數(shù),且滿足以下條件:
①f(x)=axg(x)(a>0,a≠1);
②g(x)≠0;
③f(x)g'(x)>f'(x)g(x);
,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:函數(shù) 在(﹣∞,+∞)上有極值,命題q:雙曲線 的離心率e∈(1,2).若p∨q是真命題,p∧q是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為考察高中生的性別與是否喜歡數(shù)學(xué)課程之間的關(guān)系,在某城市的某校高中生中,從男生中隨機(jī)抽取了70人,從女生中隨機(jī)抽取了50人,男生中喜歡數(shù)學(xué)課程的占,女生中喜歡數(shù)學(xué)課程的占,得到如下列聯(lián)表.

喜歡數(shù)學(xué)課程

不喜歡數(shù)學(xué)課程

合計(jì)

男生

女生

合計(jì)

(1)請將列聯(lián)表補(bǔ)充完整;試判斷能否有90%的把握認(rèn)為喜歡數(shù)學(xué)課程與否與性別有關(guān);

(2)從不喜歡數(shù)學(xué)課程的學(xué)生中采用分層抽樣的方法,隨機(jī)抽取6人,現(xiàn)從6人中隨機(jī)抽取2人,求抽取的學(xué)生中至少有1名是女生的概率..

附:,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C (ab0)的離心率為,且過點(diǎn)(1, )過橢圓C的左頂點(diǎn)A作直線交橢圓C于另一點(diǎn)P,交直線lxm(ma)于點(diǎn)M.已知點(diǎn)B(1,0),直線PBl于點(diǎn)N

(Ⅰ)求橢圓C的方程;

(Ⅱ)若MB是線段PN的垂直平分線,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且

(1)求拋物線的方程;

(2)已知點(diǎn),延長交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.

查看答案和解析>>

同步練習(xí)冊答案