已知點P到定點F(0,-2)的距離,與它到直線y=-8的距離的比是1∶2,求點P的軌跡方程,并說明軌跡是什么圖形.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•浙江二模)已知點M到定點F(1,0)的距離和它到定直線l:x=4的距離的比是常數(shù)
12
,設點M的軌跡為曲線C.
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)已知曲線C與x軸的兩交點為A、B,P是曲線C上異于A,B的動點,直線AP與曲線C在點B處的切線交于點D,當點P運動時,試判斷以BD為直徑的圓與直線PF的位置關系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•汕頭二模)已知平面內一動點 P到定點F(0,
1
2
)
的距離等于它到定直線y=-
1
2
的距離,又已知點 O(0,0),M(0,1).
(1)求動點 P的軌跡C的方程;
(2)當點 P(x0,y0)(x0≠0)在(1)中的軌跡C上運動時,以 M P為直徑作圓,求該圓截直線y=
1
2
所得的弦長;
(3)當點 P(x0,y0)(x0≠0)在(1)中的軌跡C上運動時,過點 P作x軸的垂線交x軸于點 A,過點 P作(1)中的軌跡C的切線l交x軸于點 B,問:是否總有 P B平分∠A PF?如果有,請給予證明;如果沒有,請舉出反例.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年甘肅省天水市高三第六次檢測數(shù)學文卷 題型:解答題

(12分)已知動點P到定點F (, 0 ) 的距離與點 P 到定直線 l:x=2 的距離之比為。

(1)求動點P的軌跡C的方程;

(2)設M、N是直線l上的兩個點,點E是點F關于原點的對稱點,若·=0,

    求 | MN | 的最小值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年甘肅省天水市高三第六次檢測數(shù)學文卷 題型:解答題

(12分)已知動點P到定點F (, 0 ) 的距離與點 P 到定直線 l:x=2 的距離之比為

(1)求動點P的軌跡C的方程;

(2)設M、N是直線l上的兩個點,點E是點F關于原點的對稱點,若·=0,

    求 | MN | 的最小值。

 

查看答案和解析>>

同步練習冊答案