【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn),曲線與曲線交于兩點(diǎn),求的值.

【答案】();()

【解析】

()由代入法消去參數(shù),可得曲線的普通方程為,再由極坐標(biāo)與直角坐標(biāo)的互化公式,即可求解曲線的直角坐標(biāo)方程;

()將直線的參數(shù)代入曲線的直角坐標(biāo)方程,得,由韋達(dá)定理可得,根據(jù)參數(shù)幾何意義,即求解的值.

()曲線的參數(shù)方程為(為參數(shù)),

由代入法消去參數(shù),可得曲線的普通方程為;

曲線的極坐標(biāo)方程為,得,即為,

整理可得曲線的直角坐標(biāo)方程為

()(為參數(shù)),代入曲線的直角坐標(biāo)方程,

,利用韋達(dá)定理可得,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在平行于軸的直線上,且軸的交點(diǎn)為,動點(diǎn)滿足平行于軸,且.

1)求出點(diǎn)的軌跡方程.

2)設(shè)點(diǎn),求的最小值,并寫出此時點(diǎn)的坐標(biāo).

3)過點(diǎn)的直線與點(diǎn)的軌跡交于.兩點(diǎn),求證.兩點(diǎn)的橫坐標(biāo)乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)處取得極值,不等式恒成立,求實(shí)數(shù)的取值范圍;

3)當(dāng)時,證明不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓關(guān)于直線對稱,圓心C在第二象限,半徑為

(1)求圓C的方程.

(2)是否存在直線l與圓C相切,且在x軸、y軸上的截距相等?若存在,寫出滿足條件的直線條數(shù)(不要求過程);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),、是分別過點(diǎn)的圓的切線,過此圓上的另一個點(diǎn)點(diǎn)是圓上任一不與重合的動點(diǎn))作此圓的切線,分別交、兩點(diǎn),且、兩直線交于點(diǎn)

)設(shè)切點(diǎn)坐標(biāo)為,求證:切線的方程為

設(shè)點(diǎn)坐標(biāo)為,試寫出的關(guān)系表達(dá)式(寫出詳細(xì)推理與計算過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,過點(diǎn)的直線與圓交于兩點(diǎn),

1)若,求直線的方程;

2)若直線軸交于點(diǎn),設(shè),,,R,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,垂直于梯形所在的平面,的中點(diǎn),,四邊形為矩形,線段于點(diǎn).

(1)求證:平面

(2)求二面角的正弦值;

(3)在線段上是否存在一點(diǎn),使得與平面所成角的大小為?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)2007年至2013年農(nóng)村居民家庭純收入y(單位:千元)的數(shù)據(jù)如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y關(guān)于t的線性回歸方程;

(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測該地區(qū)2015年農(nóng)村居民家庭人均純收入.

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組對該校高三學(xué)生的視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了100名學(xué)生的體檢表,并得到如下直方圖:

年級名次/是否近視

1-50

951-1000

近視

41

32

不近視

9

18

(1)若直方圖中后四組的頻數(shù)成等差數(shù)列,試估計全年級視力在5.0以下的人數(shù);

(2)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對年級名次在1~50名和951~1000名的學(xué)生進(jìn)行了調(diào)查,得到如上述表格中數(shù)據(jù),根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系;

(3)在(2)中調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取了9人,進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,并且在這9人中任取3人,記名次在1~50名的學(xué)生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

附:

0.10

0.05

0.025

0.010

0.005

k

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

同步練習(xí)冊答案