已知點(diǎn)B′為圓A:(x-1)2+y2=8上任意一點(diǎn)、點(diǎn)B(-1,0).線段BB′的垂直平分線和線段AB′相交于點(diǎn)M.
(1)求點(diǎn)M的軌跡E的方程;
(2)已知點(diǎn)M(x,y)為曲線E上任意一點(diǎn).求證:點(diǎn)關(guān)于直線xx+2yy=2的對(duì)稱點(diǎn)為定點(diǎn)、并求出該定點(diǎn)的坐標(biāo).

【答案】分析:(1)求出A的坐標(biāo),由題意可知M滿足橢圓的定義,求a、b可得它的方程.
(2)設(shè)出定點(diǎn)利用對(duì)稱知識(shí),和已知直線垂直,中點(diǎn)在已知直線上,解出定點(diǎn)坐標(biāo)即可.
解答:解:(1)連接MB,
∴MB=MB',
、而AB=2(4分)
∴點(diǎn)M的軌跡是以A、B為焦點(diǎn)且長(zhǎng)軸長(zhǎng)為的橢圓.
∴點(diǎn)M的軌跡E的方程為(8分)
(2)證明:設(shè)點(diǎn)
關(guān)于直線xx+2yy=2的對(duì)稱點(diǎn)為Q(a,b)
所以
(10分)
∴bx(2-x)=2y(2-x)(a+1).
∵x≠2
∴bx-2y(a+1)=0(14分)
因?yàn)樯鲜綄?duì)任意x,y成立,

所以對(duì)稱點(diǎn)為定點(diǎn)Q(-1,0).(16分)
點(diǎn)評(píng):本題考查圓的標(biāo)準(zhǔn)方程,點(diǎn)關(guān)于直線對(duì)稱問(wèn)題,軌跡的求法,是難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知點(diǎn)B′為圓A:(x-1)2+y2=8上任意一點(diǎn)、點(diǎn)B(-1,0).線段BB′的垂直平分線和線段AB′相交于點(diǎn)M.
(1)求點(diǎn)M的軌跡E的方程;
(2)已知點(diǎn)M(x0,y0)為曲線E上任意一點(diǎn).求證:點(diǎn)P(
3x0-2
2-x0
,
4y0
2-x0
)
關(guān)于直線x0x+2y0y=2的對(duì)稱點(diǎn)為定點(diǎn)、并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省連云港外國(guó)語(yǔ)學(xué)校高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知點(diǎn)B′為圓A:(x-1)2+y2=8上任意一點(diǎn)、點(diǎn)B(-1,0).線段BB′的垂直平分線和線段AB′相交于點(diǎn)M.
(1)求點(diǎn)M的軌跡E的方程;
(2)已知點(diǎn)M(x,y)為曲線E上任意一點(diǎn).求證:點(diǎn)關(guān)于直線xx+2yy=2的對(duì)稱點(diǎn)為定點(diǎn)、并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省實(shí)驗(yàn)中學(xué)高考考前最后沖刺數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點(diǎn)B′為圓A:(x-1)2+y2=8上任意一點(diǎn)、點(diǎn)B(-1,0).線段BB′的垂直平分線和線段AB′相交于點(diǎn)M.
(1)求點(diǎn)M的軌跡E的方程;
(2)已知點(diǎn)M(x,y)為曲線E上任意一點(diǎn).求證:點(diǎn)關(guān)于直線xx+2yy=2的對(duì)稱點(diǎn)為定點(diǎn)、并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年湖北省實(shí)驗(yàn)中學(xué)高考最后沖刺數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點(diǎn)B′為圓A:(x-1)2+y2=8上任意一點(diǎn)、點(diǎn)B(-1,0).線段BB′的垂直平分線和線段AB′相交于點(diǎn)M.
(1)求點(diǎn)M的軌跡E的方程;
(2)已知點(diǎn)M(x,y)為曲線E上任意一點(diǎn).求證:點(diǎn)關(guān)于直線xx+2yy=2的對(duì)稱點(diǎn)為定點(diǎn)、并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案