6.某次考試中,第一大題由12個選擇題組成,每題選對得5分,不選或錯選得0分,小王選對每題的概率為0.8,則其第一大題得分的均值為48.

分析 設(shè)小王選對個數(shù)為X,得分為η=5X,由題意X~B(12,0.8),由此能求出其第一大題得分的均值.

解答 解:設(shè)小王選對個數(shù)為X,得分為η=5X,
由題意X~B(12,0.8),
∴E(X)=np=12×0.8=9.6,
∴E(η)=E(5X)=5E(X)=5×9.6=48.
∴其第一大題得分的均值為48.
故答案為:48.

點(diǎn)評 本題考查離散型隨機(jī)變量的均值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意二項(xiàng)分布的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,若z1=2+i,z2=1+i,則z=z1•$\overline{z_2}$在復(fù)平面內(nèi)的對應(yīng)點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.甲、乙兩人進(jìn)行定點(diǎn)投籃游戲,投籃者若投中.則繼續(xù)投籃,否則由對方投籃,第-次由甲投籃;已知每次投籃甲、乙命中的概率分別為$\frac{1}{3}$,$\frac{3}{4}$.
(1)求第三次由乙投籃的概率;
(2)在前3次投籃中,乙投籃的次數(shù)為ξ.求ξ的分布列、期望及標(biāo)準(zhǔn)差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知cos(α+$\frac{π}{4}}$)=$\frac{2}{3}$,求sin(${\frac{π}{4}$-α)的值$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,角A,B,C的對邊分別是a,b,c,sinA,sinB,sinC成等差數(shù)列,且a=2c,則cosA=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個電路如圖所示,A,B,C,D,E,F(xiàn)為6個開關(guān),其閉合的概率都是$\frac{1}{2}$,且是相互獨(dú)立的,則燈亮的概率是$\frac{23}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求和:Sn=$\frac{1}{1×5}$+$\frac{1}{3×7}$+$\frac{1}{5×9}$+…+$\frac{1}{(2n-1)(2n+3)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列說法:
(1)一組數(shù)據(jù)不可能有兩個眾數(shù);
(2)一組數(shù)據(jù)的方差必為正數(shù),且方差越大,數(shù)據(jù)的離散程度越大;
(3)將一組數(shù)據(jù)中的每個數(shù)都加上同一個常數(shù)后,方差恒不變;
(4)在頻率分布直方圖中,每個長方形的面積等于相應(yīng)小組的頻率.
其中錯誤的個數(shù)有( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在等比數(shù)列{an}中,若a1+a3=5,a4=8,求an,S7

查看答案和解析>>

同步練習(xí)冊答案