已知數(shù)列{an}滿足,
(1)若方程f(x)=x的解稱為函數(shù)y=f(x)的不動點,求an+1=f(an)的不動點的值;
(2)若a1=2,,求證:數(shù)列{lnbn}是等比數(shù)列,并求數(shù)列{bn}的通項.
(3)當任意n∈N*時,求證:b1+b2+b3+…+bn
【答案】分析:(1)根據(jù)方程不動點的定義,令,解得an的值,
(2)把等式兩邊同時加1和兩邊同時減1,得到兩式相除得,據(jù)此可以得數(shù)列l(wèi)nbn是以-ln3為首項,3為公比的等比數(shù)列,于是可以數(shù)列{bn}的通項,
(3)根據(jù),求得數(shù)列{}前n項和,然后判斷其和與的大小.
解答:解:(1)由方程an+1=f(an)得,
解得an=0,或an=-1,或an=1.
(2)∵,,
∴兩式相除得,
即bn+1=bn3
由a1=2可以得到bn>0,則lnbn+1=lnbn3=3lnbn
,得lnb1=-ln3,
∴數(shù)列l(wèi)nbn是以-ln3為首項,3為公比的等比數(shù)列.
,(n∈N*).
(3)任意n∈N*,3n-1≥n.∴,
∴b1+b2+b3++bn
=
點評:本題主要考查數(shù)列求和和求等比數(shù)列的通項公式的知識點,解答本題的關鍵是熟練掌握等比數(shù)列的性質(zhì),還需掌握運用放縮法解答不等式,本題是一道綜合性試題,難度一般.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項和Sn;
(3)數(shù)列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習冊答案