20.已知函數(shù)f(x)=2x3-3ax2+1,其中a∈R.
(1)當(dāng)a>0時(shí),討論函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(2)求函數(shù)f(x)在區(qū)間[0,+∞)上的最小值.

分析 (1)求出f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)通過討論a的范圍,確定函數(shù)的單調(diào)性,從而求出函數(shù)的最小值即可.

解答 解:(1)a>0時(shí),f(x)=2x3-3ax2+1,x>0,
f′(x)=6x2-6ax=6x(x-a),
令f′(x)>0,解得:x>a,令f′(x)<0,解得:0<x<a,
∴f(x)在(0,a)遞減,在(a,+∞)遞增;
(2)由(1)得:a>0時(shí),
f(x)在(0,a)遞減,在(a,+∞)遞增,
∴f(x)min=f(a)=-a3+1;
a≤0時(shí),f(x)在[0,+∞)遞增,
∴f(x)min=f(0)=1.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,△ABD是邊長(zhǎng)為2的正三角形,PC⊥底面ABCD,AB⊥BP,BC=$\frac{2\sqrt{3}}{3}$.
(1)求證:PA⊥BD;
(2)若PC=BC,求二面角A-BP-D的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面.在下列命題中,正確的是①④(寫出所有正確命題的序號(hào))
①若m∥n,n∥α,則m∥α或m?α;
②若m∥α,n∥α,m?β,n?β,則α∥β;
③若α⊥γ,β⊥γ,則α∥β;
④若α∥β,β∥γ,m⊥α,則m⊥γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.△ABC 中,∠A:∠B=1:2,∠ACB的平分線 CD把△ABC 的面積分成 3:2 兩部分,則cosA等于( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{3}{4}$或$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{8}$=1的長(zhǎng)軸長(zhǎng)是(  )
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.兩圓的半徑分別為3和4,圓心距為d,且這兩個(gè)圓沒有公切線,則d的取值范圍是(  )
A.d<7B.1<d<7C.0≤d<1D.0≤d≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-ax-1,(a為實(shí)數(shù)),g(x)=lnx-x
(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)g(x)的極值;
(3)求證:lnx<x<ex(x>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知x>0,y>0且滿足$\frac{9x}{y}$+$\frac{4y}{x}$≥a2+a恒成立,則實(shí)數(shù)a的取值范圍是[-4,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若3∈{a+3,2a+1,a2+a+1},求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案