若方程2x2+4x+1=0,則|x2-x1|=(  )
A、-
2
B、±
2
C、
2
D、0
考點:二次函數(shù)的性質
專題:函數(shù)的性質及應用
分析:由已知條件利用韋達定理和完全平方公式求解.
解答: 解:設x1,x2是方程2x2+4x+1=0的兩個根,
則x1+x2=-2,x1x2=
1
2

∴|x2-x1|=
(x1+x2)2-4x1x2

=
4-4×
1
2

=
2

故選:C.
點評:本題考查一元二次方程的兩根的差的絕對值的求法,是中檔題,解題時要注意韋達定理的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

求下列各式的值:
(1)lg2+lg5+lg30-lg3;            
(2)100+27 
1
3
-16 
1
2
+
30.001

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log 
1
2
(4x-2x+1+1)的值域是[0,+∞),則它的定義域可以是( 。
A、(0,1]
B、(0,1)
C、(-∞,1]
D、(-∞,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

棱臺的一條側棱所在的直線與不含這條側棱的側面所在平面的位置關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x,y∈R,且滿足y=
1
2
x2,求證:log2(2x+2y)>
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知拋物線x2=4y,過定點M0(0,m)(m>0)的直線l交拋物線于A,B兩點.
(1)分別過A,B作拋物線的兩條切線,A,B為切點,求證:這兩條切線的交點P(x0,y0)在定直線y=-m上;
(2)當m>2時,在拋物線上存在不同的兩點P、Q關于直線l對稱,弦長|PQ|是否存在最大值?若存在,求其最大值(用m表示),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一個數(shù)列的通項公式為f(n),n∈N*,若7f(n)=f(n-1)(n≥2)且f(1)=3,則
lim
n→∞
[f(1)+f(2)+…+f(n)]等于( 。
A、
7
2
B、
3
7
C、-7
D、-
7
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

空間四邊形OABC中,邊長AC=BC,OA=3,OB=1,則向量
AB
OC
的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左焦點F任作一條與兩坐標軸都不垂直的弦AB,若點M在x軸上,且使得MF為△AMB的一條內角平分線,則稱點M為該橢圓的“左特征點”,那么“左特征點”M一定是( 。
A、橢圓左準線與x軸的交點
B、坐標原點
C、橢圓右準線與x軸的交點
D、右焦點

查看答案和解析>>

同步練習冊答案