15.已知定義在R上的函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱,且滿足f(x+2)=f(-x),若當(dāng)x∈[0,1]時(shí),f(x)=3x-1,則f(log${\;}_{\frac{1}{3}}$10)的值為$\frac{10}{27}$.

分析 本題函數(shù)解析式只知道一部分,而要求的函數(shù)值的自變量不在此區(qū)間上,由題設(shè)條件知本題中所給的函數(shù)具有對(duì)稱性函數(shù),故可以利用這一性質(zhì)將要求的函數(shù)值轉(zhuǎn)化到區(qū)間[0,1)上求解.

解答 解:由題意定義在R上的偶函數(shù)f(x),滿足f(x+2)=f(-x),
∴函數(shù)圖象關(guān)于x=1對(duì)稱,
當(dāng)x∈[0,1]時(shí),f(x)=3x-1,log${\;}_{\frac{1}{3}}$10=-log310∈(-3,-2)
由此f(log${\;}_{\frac{1}{3}}$10)=f(2-log310)=f(log3$\frac{9}{10}$)=f(-log3$\frac{9}{10}$)=${3}^{-lo{g}_{3}\frac{9}{10}-1}$=$\frac{1}{3}×\frac{10}{9}$=$\frac{10}{27}$.
故答案為:$\frac{10}{27}$

點(diǎn)評(píng) 本題考點(diǎn)抽象函數(shù)的應(yīng)用,函數(shù)的值求法,利用函數(shù)的性質(zhì)通過轉(zhuǎn)化來求函數(shù)的值,是函數(shù)性質(zhì)綜合運(yùn)用的一道好題.對(duì)于本題中恒等式的意義要好好挖掘,做題時(shí)要盡可能的從這樣的等式中挖掘出信息.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若$\overrightarrow{OB}$=a7$\overrightarrow{OA}$+a2006$\overrightarrow{OC}$,且A、B、C三點(diǎn)共線(該直線不過點(diǎn)O),則S2012等于(  )
A.1006B.2012C.22012D.2-2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.對(duì)某文科班50名同學(xué)的一次數(shù)學(xué)成績進(jìn)行了統(tǒng)計(jì),全年級(jí)文科數(shù)學(xué)平均分是100分,這個(gè)班數(shù)學(xué)成績的頻率分布直方圖如圖:(總分150分)從這個(gè)班中任取1人,其數(shù)學(xué)成績達(dá)到或超過年級(jí)文科平均分的概率是0.66.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)中既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞增的是( 。
A.y=-|x|B.y=-x2+1C.y=x3D.y=-$\frac{1}{|x|}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知橢圓Г:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1,F(xiàn)2分別作兩條平行直線AB,CD交橢圓Г于點(diǎn)A、B、C、D.
(Ⅰ)求證:|AB|=|CD|;
(Ⅱ)求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>0),過橢圓C右頂點(diǎn)和上頂點(diǎn)的直線l與圓x2+y2=$\frac{2}{3}$相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓C的上頂點(diǎn),過點(diǎn)M分別作直線MA,MB交橢圓C于A,B兩點(diǎn),設(shè)這兩條直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)復(fù)數(shù)e=cosθ+isinθ,則復(fù)數(shù)${e}^{\frac{π}{2i}}$的虛部為( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若$\overrightarrow a=(0,2),\overrightarrow b=(2sinθ,-2cosθ)$,其中$θ∈(-\frac{π}{2},0)$,則$\overrightarrow a$與$\overrightarrow b$的夾角α=( 。
A.$\frac{3π}{2}-θ$B.$\frac{π}{2}-θ$C.π-θD.π+θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx-ax.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2(x1<x2),求證:$\frac{1}{{x}_{2}}$<a<$\frac{1}{{x}_{1}}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案