【題目】已知橢圓的離心率為,且點(diǎn)在橢圓.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)的直線與橢圓交于,兩點(diǎn),在直線上存在點(diǎn),使三角形為正三角形,求的最大值.

【答案】1;(2.

【解析】

1)由離心率得,再把已知點(diǎn)的坐標(biāo)代入橢圓方程,結(jié)合可解得,得橢圓方程;

2)設(shè)直線方程為,與聯(lián)立方程組,消去,設(shè),,由韋達(dá)定理得.設(shè)線段的中點(diǎn)為,得直線方程,求出點(diǎn)坐標(biāo)(此結(jié)論對(duì)也適用),是等邊三角形等價(jià)于,由此可把表示,設(shè)換元后,可利用基本不等式求得最值.

1)設(shè),則,,所以,

由點(diǎn)在橢圓上得,

,所以橢圓的方程為.

2)顯然,直線的斜率存在,設(shè)其方程為,

聯(lián)立方程組,消去,并化簡(jiǎn)得.

設(shè),,則.

設(shè)線段的中點(diǎn)為,則直線,令

,得點(diǎn)的坐標(biāo)為,顯然當(dāng)時(shí)也符合,

所以.

又因?yàn)?/span>,

由三角形為正三角形得,

所以兩邊平方可得

,得.

,則,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,此時(shí),所以的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,已知是直角三角形,側(cè)面是矩形,,,.

1)證明:.

2是棱的中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面,,,點(diǎn)的交點(diǎn).

1)求二面角的余弦值;

2)若點(diǎn)在線段上且平面,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖一,,,分別為,的中點(diǎn),上,且,中點(diǎn),將沿折起,沿折起,使得,重合于一點(diǎn)(如圖二),設(shè)為

1)求證:平面;

2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小學(xué)一班級(jí)1999級(jí)同學(xué)舉行20周年聚會(huì),該班共來(lái)了12位同學(xué),其中女同學(xué)6位,聚會(huì)過(guò)程中有一個(gè)游戲環(huán)節(jié),在游戲環(huán)節(jié)中,需要隨機(jī)從中選出2位同學(xué)代表,進(jìn)行男女搭配完成該項(xiàng)游戲,因此,每次選出的2位同學(xué)是一男一女,才算“有效選擇”;否則視為“無(wú)效選擇”,繼續(xù)下一次選擇,直到成為“有效選擇”為止.

1)求第一次隨機(jī)選出的2位同學(xué)是“有效選擇”的概率;

2)設(shè)第一次選出的2位同學(xué)代表中女同學(xué)人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了有效地加強(qiáng)高中生自主管理能力,推出了一系列措施,其中自習(xí)課時(shí)間的自主管理作為重點(diǎn)項(xiàng)目,學(xué)校有關(guān)處室制定了高中生自習(xí)課時(shí)間自主管理方案”.現(xiàn)準(zhǔn)備對(duì)該方案進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否啟用該方案,調(diào)查人員分別在各個(gè)年級(jí)隨機(jī)抽取若干學(xué)生對(duì)該方案進(jìn)行評(píng)分,并將評(píng)分分成,,,七組,繪制成如圖所示的頻率分布直方圖.

相關(guān)規(guī)則為①采用百分制評(píng)分,內(nèi)認(rèn)定為對(duì)該方案滿意,不低于80分認(rèn)定為對(duì)該方案非常滿意,60分以下認(rèn)定為對(duì)該方案不滿意;②學(xué)生對(duì)方案的滿意率不低于即可啟用該方案;③用樣本的頻率代替概率.

1)從該校學(xué)生中隨機(jī)抽取1人,求被抽取的這位同學(xué)非常滿意該方案的概率,并根據(jù)頻率分布直方圖求學(xué)生對(duì)該方案評(píng)分的中位數(shù).

2)根據(jù)所學(xué)統(tǒng)計(jì)知識(shí),判斷該校是否啟用該方案,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線的焦點(diǎn)F任作兩條互相垂直的直線,分別與拋物線E交于A,B兩點(diǎn)和C,D兩點(diǎn),則的最小值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)在點(diǎn)處的切線是否過(guò)定點(diǎn)?若過(guò),求出該點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.

2)若有最大值,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),共享單車在我國(guó)各城市迅猛發(fā)展,為人們的出行提供了便利,但也給城市的交通管理帶來(lái)了一些困難,為掌握共享單車在省的發(fā)展情況,某調(diào)查機(jī)構(gòu)從該省抽取了5個(gè)城市,并統(tǒng)計(jì)了共享單車的指標(biāo)指標(biāo),數(shù)據(jù)如下表所示:

城市1

城市2

城市3

城市4

城市5

指標(biāo)

2

4

5

6

8

指標(biāo)

3

4

4

4

5

1)試求間的相關(guān)系數(shù),并說(shuō)明是否具有較強(qiáng)的線性相關(guān)關(guān)系(若,則認(rèn)為具有較強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒(méi)有較強(qiáng)的線性相關(guān)關(guān)系).

2)建立關(guān)于的回歸方程,并預(yù)測(cè)當(dāng)指標(biāo)為7時(shí),指標(biāo)的估計(jì)值.

3)若某城市的共享單車指標(biāo)在區(qū)間的右側(cè),則認(rèn)為該城市共享單車數(shù)量過(guò)多,對(duì)城市的交通管理有較大的影響交通管理部門將進(jìn)行治理,直至指標(biāo)在區(qū)間內(nèi)現(xiàn)已知省某城市共享單車的指標(biāo)為13,則該城市的交通管理部門是否需要進(jìn)行治理?試說(shuō)明理由.

參考公式:回歸直線中斜率和截距的最小二乘估計(jì)分別為

,,相關(guān)系數(shù)

參考數(shù)據(jù):,.

查看答案和解析>>

同步練習(xí)冊(cè)答案