定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點(diǎn)A(0,m),過坐標(biāo)原點(diǎn)O向曲線C1作切線,切點(diǎn)為B(n,t)(n>0),設(shè)曲線C1在點(diǎn)A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值;
(Ⅱ)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實(shí)數(shù)b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)x,y∈N*且x<y時(shí),證明F(x,y)>F(y,x).
(Ⅰ)∵F(x,y)=(1+x)y
f(x)=F(1,log2(x2-4x+9))=2log2(x2-4x+9)=x2-4x+9
故A(0,9),…(1分)
又過坐標(biāo)原點(diǎn)O向曲線C1作切線,切點(diǎn)為B(n,t) (n>0),f'(x)=2x-4.  
t=n2-4n+9
t
n
=2n-4
,
解得B( 3,6 ),…(2分)
S=
30
(x2-4x+9-2x)dx=(
x3
3
-3x2+9x)|03=9
.       …(4分)
(Ⅱ)g(x)=F(1,log2(x3+ax2+bx+1))=x3+ax2+bx+1,
設(shè)曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,
又由題設(shè)log2(x3+ax2+bx+1)>0,g'(x)=3x2+2ax+b,
∴存在實(shí)數(shù)b使得
3x02+2ax0+b=-8      (1)   
-4<x0<-1              (2)
x03+ax02+bx0>0     (3)
有解,…(6分)
由(1)得b=-8-3x02-2ax0,代入(3)得-2x02-ax0-8<0,…(7分)
∴由
2x02+ax0+8>0
-4<x0<-1
有解,
得2×(-4)2+a×(-4)+8>0或2×(-1)2+a×(-1)+8>0,
∴a<10或a<10,
∴a<10.                                               …(9分)
(Ⅲ)令h(x)=
ln(1+x)
x
 , x≥1
,由h′(x)=
x
1+x
-ln(1+x)
x2
,…(10分)
又令p(x)=
x
1+x
-ln(1+x),  x>0

p′(x)=
1
(1+x)2
-
1
1+x
=
-x
(1+x)2
<0
,
∵p(x)在[0,+∞)連續(xù)∴p(x)在[0,+∞)單調(diào)遞減,…(12分)
∴當(dāng)x>0時(shí)有,p(x)<p(0)=0,
∴當(dāng)x≥1時(shí)有,h'(x)<0,
∴h(x)在[1,+∞)單調(diào)遞減,…(13分)
∴1≤x<y時(shí),有
ln(1+x)
x
ln(1+y)
y
,
∴yln(1+x)>xln(1+y),
∴(1+x)y>(1+y)x,
∴當(dāng)x,y∈N*且x<y時(shí),F(xiàn)(x,y)>F(y,x).                …(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知M是△ABC內(nèi)的一點(diǎn)(不含邊界),且
AB
AC
=2
3
,∠BAC=30°,若△MBC,△MCA和△MAB的面積分別為x,y,z.
(1)x+y+z=
 
;
(2)定義f(x,y,z)=
1
x
+
4
y
+
9
z
,則f(x,y,z)的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義F(x,y)=(1+x)y,x,y∈(0,+∞),令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C,曲線C與y軸交于點(diǎn)A(0,m),過坐標(biāo)原點(diǎn)O向曲線C作切線,切點(diǎn)為B(n,t)(n>0),設(shè)曲線C在點(diǎn)A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(1)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C,若存在實(shí)數(shù)b使得曲線C在x0(-4<x0<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍
(2)當(dāng)x,y∈N*且x<y時(shí),證明F(x,y)>F(y,x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函數(shù)f(x)=F(3,log2(2x-x2+4)),寫出函數(shù)f(x)的定義域;
(Ⅱ)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C,若存在實(shí)數(shù)b使得曲線C在x0(-4<x0<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍
(Ⅲ)當(dāng)x,y∈N*且x<y時(shí),求證F(x,y)>F(y,x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•汕頭二模)定義F(x,y)=(1+x)y,x,y∈(0,+∞),
(Ⅰ)令函數(shù)f(x)=F(1,log2(x2-4x+9))的圖象為曲線C1,曲線C1與y軸交于點(diǎn)A(0,m),過坐標(biāo)原點(diǎn)O向曲線C1作切線,切點(diǎn)為B(n,t)(n>0),設(shè)曲線C1在點(diǎn)A、B之間的曲線段與線段OA、OB所圍成圖形的面積為S,求S的值;
(Ⅱ)令函數(shù)g(x)=F(1,log2(x3+ax2+bx+1))的圖象為曲線C2,若存在實(shí)數(shù)b使得曲線C2在x0(-4<x0<-1)處有斜率為-8的切線,求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)x,y∈N*且x<y時(shí),證明F(x,y)>F(y,x).

查看答案和解析>>

同步練習(xí)冊答案