13.x+x-1=4,則${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=$\sqrt{6}$.

分析 根據(jù)指數(shù)冪的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:∵x+x-1=4,
∴(${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$)2=x+x-1+2=6,
∴${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=$\sqrt{6}$,
故答案為:$\sqrt{6}$.

點(diǎn)評(píng) 本題考查了指數(shù)冪的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若函數(shù)f(x)=tlnx與函數(shù)g(x)=x2-1在點(diǎn)(1,0)處有共同的切線l,則t的值是( 。
A.$t=\frac{1}{2}$B.t=1C.t=2D.t=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.?dāng)?shù)列{an}滿足${a_n}=\frac{1}{{\sqrt{n+1}+\sqrt{n}}}$,記其前n項(xiàng)和為Sn,若Sn=8,則項(xiàng)數(shù)n的值為80.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{\frac{1}{2}x+1,0<x<2}\\{-2x+6,x≥2}\end{array}\right.$.
(1)求f(-2),f(1),f(3)的值;
(2)在平面直角坐標(biāo)系中畫出函數(shù)y=f(x)的圖象;
(3)根據(jù)圖象求函數(shù)y=f(x)的最大值,并指出函數(shù)y=f(x)取得最大值時(shí)自變量x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知二次函數(shù)y=f(x)滿足f(-2)=f(4)=-16,且函數(shù)f(x)最大值為2.
(1)求函數(shù)y=f(x)的解析式;
(2)求函數(shù)y=f(x)在[t,t+1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)$f(x)=\sqrt{\frac{x+1}{x-2}}$的定義域是集合A,函數(shù)$g(x)=\frac{1}{{\sqrt{{x^2}-(2a+1)x+{a^2}+a}}}$的定義域是集合B.
(1)求A,B
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.某校老年,中年和青年教師的人數(shù)見下表,采用分層抽樣的方法調(diào)查教師的身體狀況,在抽取的樣本中
青年教師有320人,則該樣本的老年教師人數(shù)為( 。
類別人數(shù)
老年教師900
中年教師1800
青年教師1600
A.90B.100C.180D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.$\frac{5-i}{1-i}$=( 。
A.3+2iB.2+2iC.2+3iD.-2-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某三棱錐的三視圖,則該三棱錐的外接球的表面積是( 。
A.25πB.$\frac{25}{4}$πC.29πD.$\frac{29}{4}$π

查看答案和解析>>

同步練習(xí)冊(cè)答案