【題目】已知函數(shù).
(Ⅰ)求函數(shù)的極值;
(Ⅱ)求證:當(dāng)時,;
(Ⅲ)當(dāng)時,若曲線在曲線的上方,求實(shí)數(shù)a的取值范圍.
【答案】(Ⅰ)極大值1,無極小值;(Ⅱ)見解析;(Ⅲ)
【解析】
(Ⅰ)求導(dǎo),列出隨x的變化,和的情況表,進(jìn)而求得極值;
(Ⅱ)令(),求導(dǎo),由得,則,進(jìn)而得出函數(shù)的單調(diào)性,由此得證;
(Ⅲ)當(dāng)時,由(Ⅱ)知符合題意,再令,分及均可判斷不合題意,進(jìn)而得出實(shí)數(shù)a的取值范圍.
(Ⅰ)因?yàn)?/span>,定義域,所以.令,解得.
隨x的變化,和的情況如下:
x | 0 | ||
0 | |||
增 | 極大值 | 減 |
由表可知函數(shù)在時取得極大值,無極小值;
(Ⅱ)證明:令(),
.
由得,于是,故函數(shù)是上的增函數(shù).
所以當(dāng)時,,即;
(Ⅲ)當(dāng)時,由(Ⅱ)知,滿足題意.
令,.
當(dāng)時,若,,則在上是減函數(shù).
所以時,,不合題意.
當(dāng)時,,則在上是減函數(shù),所以,不合題意.
綜上所述,實(shí)數(shù)a的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有邊長均為1的正方形正五邊形正六邊形及半徑為1的圓各一個,在水平桌面上無滑動滾動一周,它們的中心的運(yùn)動軌跡長分別為,,,,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線焦點(diǎn)為,過上一點(diǎn)作切線,交軸于點(diǎn),過點(diǎn)作直線交于點(diǎn).
(1)證明:;
(2)設(shè)直線,的斜率為,的面積為,若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,ABCD為菱形,平面ABCD,連接AC,BD交于點(diǎn)O,,,E是棱PC上的動點(diǎn),連接DE.
(1)求證:平面平面;
(2)當(dāng)面積的最小值是4時,求此時點(diǎn)E到底面ABCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線PQ與⊙O相切于點(diǎn)A,AB是⊙O的弦,∠PAB的平分線AC交⊙O于點(diǎn)C,連結(jié)CB,并延長與直線PQ相交于點(diǎn)Q,若AQ=6,AC=5.
(Ⅰ)求證:QC2﹣QA2=BCQC;
(Ⅱ)求弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)直線與軸的交點(diǎn)為,經(jīng)過點(diǎn)的直線與曲線交于兩點(diǎn),若,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】試在①,②,③三個條件中選兩個條件補(bǔ)充在下面的橫線處,使得面ABCD成立,請說明理由,并在此條件下進(jìn)一步解答該題:
如圖,在四棱錐中,,底ABCD為菱形,若__________,且,異面直線PB與CD所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在等腰直角中,斜邊,D為的中點(diǎn),將沿折疊得到如圖(2)所示的三棱錐,若三棱錐的外接球的半徑為,則_________.
圖(1) 圖(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球體積的最大值為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com