精英家教網 > 高中數學 > 題目詳情
在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρsin(θ+
π
4
)=2
2
,曲線C2的參數方程為
x=cosθ
y=sinθ
(θ為參數).
(Ⅰ)求C1的直角坐標方程,它表示什么曲線?
(Ⅱ)求C2上的點到C1的最小距離.
考點:參數方程化成普通方程
專題:坐標系和參數方程
分析:(I)由曲線C1的極坐標方程ρsin(θ+
π
4
)=2
2
,展開為ρ(
2
2
sinθ+
2
2
cosθ)=2
2
,把
x=ρcosθ
y=ρsinθ
代入即可得出;
(II)由曲線C2的參數方程
x=cosθ
y=sinθ
(θ為參數)可得x2+y2=1.求出圓心O到直線的距離d.則C2上的點到C1的最小距離=d-r.
解答: 解:(I)由曲線C1的極坐標方程ρsin(θ+
π
4
)=2
2
,展開為ρ(
2
2
sinθ+
2
2
cosθ)=2
2
,
化為x+y-4=0,表示直線.
(II)由曲線C2的參數方程
x=cosθ
y=sinθ
(θ為參數)可得x2+y2=1.圓心O(0,0),半徑r=1.
∴圓心O到直線的距離d=
4
2
=2
2

∴C2上的點到C1的最小距離=d-r=2
2
-1.
點評:本題考查了極坐標方程與參數方程化為普通方程,考查了圓的標準方程、點到直線的距離公式,考查了推理能力與計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設集合A={x∈Z|x≤-3},B={x∈Z|x≤2},全集U=Z,則(∁UA)∩B=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

從點P1(0,0)作x軸的垂線交曲線y=ex于點Q1(0,1),曲線在Q點處的切線與x軸交于點P2.現(xiàn)從P2作x軸的垂線交曲線于點Q2,依次重復上述過程,可得到一系列點:P1,Q1,P2,Q2,…,則
n
i=1
|PiQi|=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)定義域為R,對于任意x、y,都有f(x)+f(y)=f(x+y).且x>0時,f(x)>0,則( 。
A、f(x)是偶函數且在R上單調遞減
B、f(x)是偶函數且在R上單調遞增
C、f(x)是奇函數且在R上單調遞增
D、f(x)是奇函數且在R上單調遞減

查看答案和解析>>

科目:高中數學 來源: 題型:

數列{an}中2an+1-2an=1,則a101=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設f(x)是定義在R上的奇函數,滿足f(x)=f(2-x),且x∈[0,1],f(x)=x3,以下命題中:
①f(x)的圖象關于x=1對稱,
②f(x)的圖象關于點(1,0)對稱,
③f(x)的周期為4,
④方程f(x)=
1
2
在區(qū)間[0,2014]上有1008個根. 
一定成立的有:
 

查看答案和解析>>

科目:高中數學 來源: 題型:

以下四個關系:φ∈{0},0∈φ,{φ}⊆{0},φ
?
{0},其中正確的個數是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

等差數列{an}的前n項和為Sn,a10=5,則S19=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為6.其離心率為
7
4
.若l1,l2是橢圓C的兩條相互垂直的切線,l1,l2的交點為點P.
(1)求橢圓C的方程; 
(2)求點P的軌跡方程.

查看答案和解析>>

同步練習冊答案