7.已知兩個等差數(shù)列{an}和{bn}的前n項和分別是Sn和Tn,且對任意正整數(shù)n都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{3n+5}{2n+3}$,則$\frac{{a}_{7}}{_{7}}$=$\frac{44}{29}$.

分析 利用等差數(shù)列的通項公式與求和公式及其性質(zhì)即可得出.

解答 解:$\frac{{a}_{7}}{_{7}}$=$\frac{\frac{13({a}_{1}+{a}_{13})}{2}}{\frac{13(_{1}+_{13})}{2}}$=$\frac{{S}_{13}}{{T}_{13}}$=$\frac{3×13+5}{2×13+3}$=$\frac{44}{29}$.
故答案為:$\frac{44}{29}$.

點評 本題考查了等差數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,嵩山上原有一條筆直的山路BC,現(xiàn)在又新架設(shè)了 一條索道AC,李在山腳B處看索道AC,發(fā)現(xiàn)張角∠ABC=120°;從B處攀登4千米到達D處,回頭看索道AC,發(fā)現(xiàn)張角∠ADC=150°;從D處再攀登8千米方到達C處,索道AC的長為$4\sqrt{13}$千米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{y≤2}\\{x+y≥4}\\{x-y≤1}\end{array}\right.$,則z=3x+y的最大值為( 。
A.8B.11C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若目標函數(shù)z=ax+by(a>0,b>0)滿足約束條件$\left\{\begin{array}{l}{2x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$且最大值為40,則$\frac{5}{a}$+$\frac{1}$的最小值為(  )
A.1B.$\frac{9}{4}$C.4D.$\frac{25}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)為同一函數(shù)的是( 。
A.y=x2-2x和y=t2-2tB.y=x0和y=1
C.y=$\sqrt{(x+1)^{2}}$和y=x+1D.y=lgx2和y=2lgx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若點M是△ABC所在平面內(nèi)的一點,且滿足5$\overrightarrow{AM}$=$\overrightarrow{AB}$+3$\overrightarrow{AC}$,則△MBC與△ABC的面積比為(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知集合A=[1,4],B=(-∞,a),若A⊆∁BB,則實數(shù)a的取值范圍為(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,角A、B、C的對邊分別為a、b、c,若acosB+bcosA=csinA,則△ABC的形狀為( 。
A.直角三角形B.鈍角三角形C.銳角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=x2-2ax+2在(-∞,6)內(nèi)遞減,則a的取值范圍為[6,+∞).

查看答案和解析>>

同步練習(xí)冊答案