在數(shù)列{an}中,a1=1,an+1=(1+) an+(n∈N*)
(Ⅰ)若bn=,試求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,試求Sn
【答案】分析:解:(Ⅰ),所以,,,,,…,,用累加法能夠求出數(shù)列{bn}的通項公式.
(Ⅱ),an的前n項和Sn=2(1+2+),令,用錯位相減法能夠求出Sn
解答:解:(Ⅰ)
(1分)
,,,,,(3分)
(6分)
(Ⅱ),an的前n項和Sn=2(1+2+)(7分)

+
(11分)
(13分)
點評:第(Ⅰ)題考查數(shù)列通項公式的求法,解題時要注意累加法的運用;第(Ⅱ)考查數(shù)列前n項和的應(yīng)用,解題時要注意錯位相減法的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{
an
n
}的前n項和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a=
12
,前n項和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=a,前n項和Sn構(gòu)成公比為q的等比數(shù)列,________________.

(先在橫線上填上一個結(jié)論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{}的前n項和為Tn,證明:

查看答案和解析>>

同步練習冊答案