【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重. 大氣污染可引起心悸、呼吸困難等心肺疾病。為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對(duì)入院50人進(jìn)行了問(wèn)卷調(diào)查得到了如在的列聯(lián)表:已知在全部50人中隨機(jī)抽取1人,抽到患心肺疾病的人的概率為.

(Ⅰ)請(qǐng)將右面的列聯(lián)表補(bǔ)充完整;

患心肺疾病

不患心肺疾病

合計(jì)

5

10

合計(jì)

50

(Ⅱ)是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說(shuō)明你的理由;

(Ⅲ)已知在患心肺疾病的10位女性中,有3位又患胃病.現(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列以及數(shù)學(xué)期望.

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式 其中

【答案】見(jiàn)解析見(jiàn)解析見(jiàn)解析

【解析】

)根據(jù)在全部50人中隨機(jī)抽取1人抽到患心肺疾病的概率為,可得患心肺疾病的人數(shù),即可得到列聯(lián)表;()利用公式求得K2,與臨界值比較,即可得到結(jié)論;()根據(jù)題意寫出可能取值,并求其概率即可求解

(Ⅰ)列聯(lián)表補(bǔ)充如下

患心肺疾病

不患心肺疾病

合計(jì)

20

5

25

10

15

25

合計(jì)

30

20

50

(Ⅱ)∵

∴有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)

(Ⅲ)根據(jù)題意,的值可能為0,1,2,3

, ,

分布列如下:

0

1

2

3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了保障某治療新冠肺炎藥品的主要藥理成分在國(guó)家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),武漢某制藥廠在該藥品的生產(chǎn)過(guò)程中,檢驗(yàn)員在一天中按照規(guī)定從該藥品生產(chǎn)線上隨機(jī)抽取20件產(chǎn)品進(jìn)行檢測(cè),測(cè)量其主要藥理成分含量(單位:mg.根據(jù)生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的主要藥理成分含量服從正態(tài)分布Nμ,σ2.在一天內(nèi)抽取的20件產(chǎn)品中,如果有一件出現(xiàn)了主要藥理成分含量在(μ3σ,μ+3σ)之外的藥品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過(guò)程可能出現(xiàn)了異常情況,需對(duì)本次的生產(chǎn)過(guò)程進(jìn)行檢查.

1)下面是檢驗(yàn)員在224日抽取的20件藥品的主要藥理成分含量:

10.02

9.78

10.04

9.92

10.14

10.04

9.22

10.13

9.91

9.95

10.09

9.96

9.88

10.01

9.98

9.95

10.05

10.05

9.96

10.12

經(jīng)計(jì)算得xi9.96,s0.19;其中xi為抽取的第i件藥品的主要藥理成分含量,i1,2,,20.用樣本平均數(shù)作為μ的估計(jì)值,用樣本標(biāo)準(zhǔn)差s作為σ的估計(jì)值,利用估計(jì)值判斷是否需對(duì)本次的生產(chǎn)過(guò)程進(jìn)行檢查?

2)假設(shè)生產(chǎn)狀態(tài)正常,記X表示某天抽取的20件產(chǎn)品中其主要藥理成分含量在(μ3σμ+3σ)之外的藥品件數(shù),求/span>PX1)及X的數(shù)學(xué)期望.

附:若隨機(jī)變量Z服從正態(tài)分布Nμσ2),則Pμ3σZμ+3σ≈0.9974,0.997419≈0.95.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中, 邊上的中線長(zhǎng)為3,且, .

(1)求的值;

(2)求外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三國(guó)時(shí)代吳國(guó)數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí),圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成紅(朱)色及黃色其面積稱為朱實(shí),黃實(shí),利朱用2×勾×股+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+股2=弦2,設(shè)勾股中勾股比為,若向弦圖內(nèi)隨機(jī)拋擲1000顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A.886B.500C.300D.134

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩年度未發(fā)生有責(zé)任道路交通事故

下浮

上三年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任交通死亡事故

上浮30%

某機(jī)構(gòu)為了解某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問(wèn)題:

1)按照我國(guó)《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)

2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購(gòu)進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000:

①若該銷售商購(gòu)進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購(gòu)進(jìn)100(車齡已滿三年)該品牌二手車,求他獲得利潤(rùn)的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“生命重于泰山,疫情就是命令,防控就是責(zé)任”.面對(duì)疫情,為切實(shí)做好防控,落實(shí)“停課不停學(xué)”,某校高三年級(jí)啟動(dòng)線上公益學(xué)習(xí)活動(dòng),助“戰(zhàn)”高考.為了解學(xué)生的學(xué)習(xí)效果,李華老師在任教的甲、乙兩個(gè)班中各隨機(jī)抽取20名學(xué)生進(jìn)行一次檢測(cè),根據(jù)他們?nèi)〉玫某煽?jī)(單位:分,滿分100分)繪制了如下莖葉圖,記成績(jī)不低于70分者為“成績(jī)優(yōu)良”.

1)分別估計(jì)甲、乙兩個(gè)班“成績(jī)優(yōu)良”的概率;

2)根據(jù)莖葉圖判斷哪個(gè)班的學(xué)習(xí)效果更好?并從兩個(gè)角度來(lái)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)的兩個(gè)極值點(diǎn)分別為,若恒成立,則實(shí)數(shù)的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,左、右頂點(diǎn)分別為,,上、下頂點(diǎn)分別為,,且為等邊三角形,過(guò)點(diǎn)的直線與橢圓軸右側(cè)的部分交于兩點(diǎn),為坐標(biāo)原點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù)).

1)點(diǎn)在曲線上,且曲線在點(diǎn)處的切線與直線:垂直,求點(diǎn)的直角坐標(biāo);

2)設(shè)直線與曲線有且只有一個(gè)公共點(diǎn),求直線的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案