【題目】成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列{Sn+}是等比數(shù)列.
【答案】(Ⅰ)(Ⅱ)詳見解析
【解析】
試題分析:(I)利用成等差數(shù)列的三個(gè)正數(shù)的和等于15可設(shè)三個(gè)數(shù)分別為5-d,5,5+d,代入等比數(shù)列中可求d,進(jìn)一步可求數(shù)列{bn}的通項(xiàng)公式;(II)根據(jù)(I)及等比數(shù)列的前 n項(xiàng)和公式可求,要證數(shù)列是等比數(shù)列即可
試題解析:(I)設(shè)成等差數(shù)列的三個(gè)正數(shù)分別為a﹣d,a,a+d
依題意,得a﹣d+a+a+d=15,解得a=5
所以{bn}中的依次為7﹣d,10,18+d
依題意,有(7﹣d)(18+d)=100,解得d=2或d=﹣13(舍去)
故{bn}的第3項(xiàng)為5,公比為2
由b3=b122,即5=4b1,解得
所以{bn}是以首項(xiàng),2為公比的等比數(shù)列,通項(xiàng)公式為 ……………6分
(II)數(shù)列{bn}的前和
即,所以,
因此{}是以為首項(xiàng),公比為2的等比數(shù)列 …………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,四邊形為直角梯形,平面 ,為的中點(diǎn),.
(1)求證:平面 ;
(2)設(shè),求點(diǎn)到平面 的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高二年級(jí)學(xué)生中隨機(jī)抽取50名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.
(1)若該校高二年級(jí)共有學(xué)生1000人,試估計(jì)成績不低于60分的人數(shù);
(2)求該校高二年級(jí)全體學(xué)生期中考試成績的眾數(shù)、中位數(shù)和平均數(shù)的估計(jì)值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,底面是、邊長為的菱形,又底,且,點(diǎn)分別是棱的中點(diǎn).
(1)證明:平面;
(2)證明:平面平面;
(3)求點(diǎn)到平面的距離.[
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的最小值為0,其中,設(shè).
(1)求的值;
(2)對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍;
(3)討論方程在上根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線的斜率;
(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有編號(hào)分別為1,2,3,4,5的五道不同的政治題和編號(hào)分別為6,7,8,9的四道不同的歷史題.甲同學(xué)從這九道題中一次性隨機(jī)抽取兩道題,每道題被抽到的概率是相等的,用符號(hào)(x,y)表示事件“抽到的兩道題的編號(hào)分別為x,y,且x<y.”.
(1)問有多少個(gè)基本事件,并列舉出來;
(2)求甲同學(xué)所抽取的兩道題的編號(hào)之和小于17但不小于11的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx(a≠0)的導(dǎo)函數(shù)f′(x)=-2x+7,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)Pn(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上,求數(shù)列{an}的通項(xiàng)公式及Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,曲線與在原點(diǎn)處有公共切線.
(I)若為函數(shù)的極大值點(diǎn),求的單調(diào)區(qū)間(用表示);
(II)若,,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com