已知正項數(shù)列{an}為等比數(shù)列且5a2是a4與3a3的等差中項,若a2=2,則該數(shù)列的前5項的和為
 
考點:等比數(shù)列的前n項和
專題:等差數(shù)列與等比數(shù)列
分析:利用等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式即可得出.
解答: 解:設(shè)正項數(shù)列等比數(shù)列{an}的公比為q,
∵5a2是a4與3a3的等差中項,
∴10a2=a4+3a3,
∴10a2=a2q2+3a2q,
又a2=2,∴20=2q2+6q,又q>0.
解得q=2.
∴a1=
a2
q
=1.
∴該數(shù)列的前5項的和=
25-1
2-1
=31.
故答案為:31.
點評:本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了計算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入的x,y∈R,那么輸出的S的最大值為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
2
+y2=1的左右焦點,過F1作傾斜角為45°的直線與橢圓相交于A,B兩點.
(1)求△F2AB的周長
(2)求AB的長
(3)求△F2AB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知矩形ABCD的對角線交于點P(2,0),邊AB所在直線的方程為x-3y-6=0,點(-1,1)在邊AD所在的直線上.
(1)求矩形的外接圓的方程;
(2)已知直線l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求證:直線l與矩形ABCD的外接圓恒相交,并求出相交的弦長最短時的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)平面內(nèi)有n條直線(n≥3),其中有且僅有兩條直線互相平行,任意三條直線不過同一點.若用f(n)表示這n條直線交點的個數(shù),當n>4時,f(n)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a1nx-ax-3(a≠0)
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,那么實數(shù)m在什么范圍取值時,函數(shù)g(x)=x3+x2[
m
2
+f′(x)]
在區(qū)間(2,3)內(nèi)總存在極值?
(3)求證:
1n2
2
×
1n3
3
×
1n4
4
×
1n5
5
×
1nn
n
1
n
(n≥2,n∈N*)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三個數(shù)2,m,8構(gòu)成一個等比數(shù)列,則圓錐曲線
x2
m
+
y2
2
=1離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)的二次項系數(shù)為正且f(2-x)=f(2+x).求不等式f(2-
1
2
x2)<f(-x2+6x-7)的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)下列條件,分別求出相應橢圓的標準方程:
(1)焦點在y軸上,長軸是短軸的3倍且經(jīng)過點A(3,0);
(2)已知一個焦點是F(1,0),且短軸的兩個三等分點M,N與F構(gòu)成正三角形.

查看答案和解析>>

同步練習冊答案