已知點(diǎn)A(-2,),F(xiàn)是橢圓的右焦點(diǎn),點(diǎn)M在橢圓上移動(dòng),當(dāng)取最小值時(shí),求點(diǎn)M的坐標(biāo)。

 

 

 

 

【答案】

 設(shè)直線L是橢圓的右準(zhǔn)線,MP⊥L,垂足為P,則,即

由已知可得:,,所以

,從而

當(dāng)且僅當(dāng)M、A、P三點(diǎn)共線且M是AP內(nèi)分點(diǎn)時(shí),取等號(hào),此時(shí)點(diǎn)M的縱坐標(biāo)為

代入已知橢圓方程,得,解之得

由于M點(diǎn)是AP的內(nèi)分點(diǎn),故,取

所以當(dāng)取最小值時(shí),點(diǎn)M的坐標(biāo)為(

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,
2
)
是離心率為
2
2
的橢圓C:
x2
b2
+
y2
a2
=1(a>b>0)
上的一點(diǎn).斜率為
2
的直線BD交橢圓C于B、D兩點(diǎn),且A、B、D三點(diǎn)不重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)△ABD的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由?
(Ⅲ)求證:直線AB、AD的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,
2
)
是離心率為
2
2
的橢圓C:
x2
b2
+
y2
a2
=1(a>b>0)
上的一點(diǎn).斜率為
2
的直線BD交橢圓C于B、D兩點(diǎn),且A、B、D三點(diǎn)不重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)△ABD的面積是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,-2),若向量與a=(2,3)同向,||=2,則點(diǎn)B的坐標(biāo)為_____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(5,2)、B(1,1)、C(1,)、P(x,y)在△ABC表示的區(qū)域內(nèi)(包括邊界)且目標(biāo)函數(shù)z=ax+y(a>0)取得最大值的最優(yōu)解有無窮多個(gè),則a的值為

A.                                                               B.

C.4                                                                 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)在平面直角坐標(biāo)系中,已知點(diǎn)A(-2,1),直線。

(1)若直線過點(diǎn)A,且與直線垂直,求直線的方程;

(2)若直線與直線平行,且在軸、軸上的截距之和為3,求直線的方程。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案