【題目】已知圓C的圓心在直線l:y=2x上,且經(jīng)過點(diǎn)A(﹣3,﹣1),B(4,6).
(Ⅰ)求圓C的方程;
(Ⅱ)點(diǎn)P是直線l上橫坐標(biāo)為﹣4的點(diǎn),過點(diǎn)P作圓C的切線,求切線方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga(1﹣x)+loga(x+3),其中0<a<1.
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的最小值為﹣4,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(0)=2和f(x+1)﹣f(x)=2x﹣1對(duì)任意實(shí)數(shù)x都成立.
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)t∈[﹣1,3]時(shí),求y=f(2t)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中, 平面, // , , , 分別為
線段, 的中點(diǎn).
(Ⅰ)求證: //平面;
(Ⅱ)求證: 平面;
(Ⅲ)寫出三棱錐與三棱錐的體積之比.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)求實(shí)數(shù)a的范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù).
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=log 為奇函數(shù),a為常數(shù),
(1)求a的值;
(2)證明f(x)在區(qū)間(1,+∞)上單調(diào)遞增;
(3)若x∈[3,4],不等式f(x)>( )x+m恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)超市購進(jìn)了A,B,C,D四種新產(chǎn)品,為了解新產(chǎn)品的銷售情況,該超市隨機(jī)調(diào)查了15位顧客(記為)購買這四種新產(chǎn)品的情況,記錄如下(單位:件):
顧 客 產(chǎn) 品 | |||||||||||||||
A | 1 | 1 | 1 | 1 | 1 | ||||||||||
B | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
D | 1 | 1 | 1 | 1 | 1 | 1 |
(Ⅰ)若該超市每天的客流量約為300人次,一個(gè)月按30天計(jì)算,試估計(jì)產(chǎn)品A的月銷售量(單位:件);
(Ⅱ)為推廣新產(chǎn)品,超市向購買兩種以上(含兩種)新產(chǎn)品的顧客贈(zèng)送2元電子紅包.現(xiàn)有甲、乙、丙三人在該超市購物,記他們獲得的電子紅包的總金額為X,
求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅲ)若某顧客已選中產(chǎn)品B,為提高超市銷售業(yè)績,應(yīng)該向其推薦哪種新產(chǎn)品?(結(jié)果不需要證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)為選拔選手參加“中國漢字聽寫大會(huì)”,某中學(xué)舉行了一次“漢字聽寫大賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì).按照, , , , 的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的、的值;
(2)在選取的樣本中,從競(jìng)賽成績?cè)?/span>80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“中國漢字聽寫大會(huì)”,求所抽取的2名學(xué)生中至少有一人得分在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 ,離心率,它的長軸長等于圓的直徑.
(1)求橢圓 的方程;
(2)若過點(diǎn)的直線交橢圓于兩點(diǎn),是否存在定點(diǎn) ,使得以為直徑的圓經(jīng)過這個(gè)定點(diǎn),若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com