中心點(diǎn)在原點(diǎn),準(zhǔn)線方程為,離心率為的橢圓方程是(      )
A.B.C.D.
A
由條件可設(shè)橢圓方程為,則,解得a=2,
C=1,所以b=.故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1,F2是橢圓的左、右焦點(diǎn),點(diǎn)P在橢圓上,且記線段PF1與y軸的交點(diǎn)為Q,O為坐標(biāo)原點(diǎn),若△F1OQ與四邊形OF2PQ的面積之比為1: 2,則該橢圓的離心率等于   (       )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分16分)
已知橢圓上的一動(dòng)點(diǎn)到右焦點(diǎn)的最短距離為,且右焦點(diǎn)到右準(zhǔn)線的距離等于短半軸的長.(1)求橢圓的方程;
(2)設(shè)是橢圓上關(guān)于軸對(duì)稱的任意兩個(gè)不同的點(diǎn),連結(jié)交橢圓于另一點(diǎn),證明直線軸相交于定點(diǎn);
(3)在(2)的條件下,過點(diǎn)的直線與橢圓交于兩點(diǎn),求的取值
范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,直線過點(diǎn),,且與橢圓相切于點(diǎn)
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)的動(dòng)直線與曲線相交于不同的兩點(diǎn),曲線在點(diǎn)處的切線交于點(diǎn).試問:點(diǎn)是否在某一定直線上,若是,試求出定直線的方程;否則,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題10分)
設(shè)分別為橢圓的左、右兩個(gè)焦點(diǎn).(1)若橢圓上的點(diǎn)兩點(diǎn)的距離之和等于4,求橢圓的方程和焦點(diǎn)坐標(biāo);(2)設(shè)點(diǎn)P是(1)中所得橢圓上的動(dòng)點(diǎn),。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

與橢圓共焦點(diǎn)且過點(diǎn)的雙曲線方程是 (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線-=1,橢圓的焦點(diǎn)恰好為雙曲線的兩個(gè)頂點(diǎn),橢圓與雙曲線的離心率互為倒數(shù),則橢圓的方程為               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)∈(0,),方程表示焦點(diǎn)在x軸上的橢圓,則的取值范圍是(  )
A.(0,B.(,)C.(0,)D.[,)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓(0<b<2)的離心率等于拋物線(p>0).
(1)若拋物線的焦點(diǎn)F在橢圓的頂點(diǎn)上,求橢圓和拋物線的方程;
(II)若拋物線的焦點(diǎn)F為,在拋物線上是否存在點(diǎn)P,使得過點(diǎn)P的切線與橢圓相交于A,B兩點(diǎn),且滿足?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案