如圖,邊長(zhǎng)為4的正方形ABCD與正三角形ADP所在的平面相互垂直,且M、N分別為PB、AD中點(diǎn).
(1)求證:MN∥面PCD;
(2)求直線PC與平面PNB所成角的正弦值.
考點(diǎn):直線與平面所成的角,直線與平面平行的判定
專題:空間位置關(guān)系與距離,空間角
分析:(1)取PC的中點(diǎn)G,連結(jié)MG、DG,由已知得四邊形DNMG為平行四邊形,由此能證明MN∥面PDC.
(2)連接BN、NC、PN,過(guò)點(diǎn)C作CH⊥BN,垂足為H,連結(jié)PH由已知得∠CPH為直線PC與平面PNB所成的角,由此能求出直線PC與平面PNB所成角的正弦值.
解答: (1)證明:取PC的中點(diǎn)G,連結(jié)MG、DG,在△PBC中,
∵M(jìn)、G分別為PB、PC的中點(diǎn),∴MG∥BC,且MG=
1
2
BC,又ND=
1
2
AD,
∴MG
.
DN,故四邊形DNMG為平行四邊形,
∴MN∥DG,又DG?平面PDC,M?N平面PDC,
∴MN∥面PDC.…(6分)
(2)解:連接BN、NC、PN,因?yàn)槊鍭DP⊥面ABCD,且PN⊥AD,
所以PN⊥面ABCD,又PN?面PNB,所以面PNB⊥面ABCD.
過(guò)點(diǎn)C作CH⊥BN,垂足為H,連結(jié)PH,∴CH⊥面PNB,
故∠CPH為直線PC與平面PNB所成的角,…(8分)
在正方形ABCD中,由已知條件,令∠ABN=∠BCH=θ,
∴CH=BCcosθ=4×
2
5
=
8
5
,…(10分)
在Rt△PNC中,∵PN=2
3
,NC=2
5
,∴PC=4
2
,
在Rt△CHP中,sin∠CPH=
CH
PC
=
8
4
2
×
5
=
10
5
.…(12分)
點(diǎn)評(píng):本題考查空間線面關(guān)系、幾何體的體積等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1:3x+4y-2=0和直線l2:2x+y+2=0,則l1與l2交點(diǎn)的坐標(biāo)是
 
;直線3x+4y-2+λ(2x+y+2)=0恒過(guò)定點(diǎn)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域?yàn)镽的奇函數(shù)f(x),當(dāng)x∈(-∞,0)時(shí)f(x)+xf′(x)<0恒成立,若a=2f(2),b=ln2•f(ln2),c=-f(-1),則a,b,c的大小關(guān)系為(  )
A、a>b>c
B、c>b>a
C、a>c>b
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
(
1
x
-2x)6,x<0
-
x
,x≥0
則x>0時(shí),f[f(x)]表達(dá)式中的展開式中的常數(shù)項(xiàng)為
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,且a≠1,f(logax)=
1
a2-1
(x-
1
x
)

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)試判定函數(shù)f(x)的奇偶性與單調(diào)性;
(Ⅲ)若對(duì)于函數(shù)f(x),當(dāng)θ∈R時(shí),f(a+cos2θ)+f(4sinθ-6)<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=3x+sinx-2cosx的圖象在點(diǎn)A(x0,f(x0))處的切線斜率為3,則tanx0的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線2x2-y2=1的離心率為( 。
A、
6
2
B、
2
C、
3
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解某班學(xué)生喜愛(ài)打籃球是否與性別有關(guān),對(duì)本班60人進(jìn)行了問(wèn)卷調(diào)查得到了如下的2×2列聯(lián)表:
喜愛(ài)打籃球不喜愛(ài)打籃球合計(jì)
男生24832
女生121628
合計(jì)362460
(I)用分層抽樣的方法在喜愛(ài)打籃球的學(xué)生中抽6人,其中男生抽多少人?
(Ⅱ)在上述抽取的人中選2人,求恰有一名女生的概率;
(Ⅲ)你是否有95%的把握認(rèn)為喜愛(ài)打籃球與性別有關(guān)?說(shuō)明你的理由.
下面的臨界值表供參考:
P(X2≥x0)或P(K2≥k00.100.050.0100.005
x0(或k02.7063.8416.6357.879
(參考公式:X2=
n(n11n13-n13n21)2
n1+n2+n+1n+1
,其中n=n11+n12+n21+n12或K2=
n(nd-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

AB為圓O的直徑,點(diǎn)E、F在圓上,AB∥EF,矩形ABCD所在平面與圓O所在平面互相垂直,已知AB=2,BC=EF=1.
(Ⅰ)求證:BF⊥平面DAF;
(Ⅱ)求ABCD與平面CDEF所成銳二面角的某三角函數(shù)值;
(Ⅲ)求多面體ABCDFE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案