已知命題p:數(shù)學(xué)公式>0;命題q:數(shù)學(xué)公式有意義,則?p是?q的


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充分必要條件
  4. D.
    不充分不必要條件
B
分析:解不等式>0,易得?p對(duì)應(yīng)x的取值范圍,根據(jù)函數(shù)定義域的求法,易得到條件q:有意義,得?q對(duì)應(yīng)x的取值范圍,然后易判斷p??q,?q??p的真假,最后根據(jù)充要條件的定義,得到答案.
解答:∵p:>0?x>0,
∴?p:x≤0.
又∵q:有意義?x≥0,
∴?q:x<0,
∴?p??q為假命題,但?q??p為真命題,
∴?p是?q的必要不充分條件.
故選B
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是充要條件的定義,先判斷p??q,?q??p的真假,最后根據(jù)充要條件的定義,得到答案是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命p:?x∈R,使得x+
1
x
<2
,命題q:?x∈R,x2+x+1>0,下列結(jié)論正確的是( 。
A、命題“p∧q”是真命題
B、命題“(¬p)∧q”是真命題
C、命題“p∧(¬q)”是真命題
D、命題“(¬p)∧(¬q)”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省泉州市晉江市季延中學(xué)高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知命p:?x∈R,使得x+,命題q:?x∈R,x2+x+1>0,下列結(jié)論正確的是( )
A.命題“p∧q”是真命題
B.命題“(¬p)∧q”是真命題
C.命題“p∧(¬q)”是真命題
D.命題“(¬p)∧(¬q)”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年黑龍江省哈爾濱六中高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知命p:?x∈R,使得x+,命題q:?x∈R,x2+x+1>0,下列結(jié)論正確的是( )
A.命題“p∧q”是真命題
B.命題“(¬p)∧q”是真命題
C.命題“p∧(¬q)”是真命題
D.命題“(¬p)∧(¬q)”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第1章 常用邏輯用語》2010年單元測(cè)試卷(2)(解析版) 題型:選擇題

已知命p:?x∈R,使得x+,命題q:?x∈R,x2+x+1>0,下列結(jié)論正確的是( )
A.命題“p∧q”是真命題
B.命題“(¬p)∧q”是真命題
C.命題“p∧(¬q)”是真命題
D.命題“(¬p)∧(¬q)”是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年北京市昌平區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

已知命p:?x∈R,使得x+,命題q:?x∈R,x2+x+1>0,下列結(jié)論正確的是( )
A.命題“p∧q”是真命題
B.命題“(¬p)∧q”是真命題
C.命題“p∧(¬q)”是真命題
D.命題“(¬p)∧(¬q)”是真命題

查看答案和解析>>

同步練習(xí)冊(cè)答案