直線被兩直線截得的線段中點為P
(1)求直線的方程
(2)已知點,在直線上找一點M,使最小,并求出這個最小值

(1);(2) 的最小值,M

解析試題分析:(1)設(shè)直線與直線交于點E,與直線交于點F,設(shè)點E,則解得E
所求直線為
(2)設(shè)點A關(guān)于直線的對稱點,則
解得的坐標(biāo)為 。所以的最小值=,M
考點:本題考查了直線方程的求法及對稱性的運(yùn)用
點評:此類問題應(yīng)掌握點關(guān)于點對稱、直線關(guān)于點對稱、點關(guān)于直線對稱、直線關(guān)于直線對稱四種對稱關(guān)系,要注意以下兩個問題:(1)光線反射問題即是對稱問題;(2) 需要記住的特殊情況:與Ax+By+C=0關(guān)于x軸對稱 Ax-By+C=0;關(guān)于y軸對稱-Ax+By+C=0;關(guān)于原點對稱-Ax-By+C=0;關(guān)于y=x對稱Bx+Ay+C=0;關(guān)于y=-x對稱 -Bx-Ay+C=0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的頂點A為(3,-1),AB邊上的中線所在直線方程為,的平分線所在直線方程為,求BC邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求滿足下列條件的直線方程:
(1)經(jīng)過兩條直線的交點,且平行于直線
(2)經(jīng)過兩條直線的交點,且垂直于直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)A(xA,yA),B(xB,yB)為平面直角坐標(biāo)系上的兩點,其中xA,yA,xB,yBÎZ.令△x=xB-xA,△y=yB-yA,若|△x|+|△y|=3,且|△x|·|△y|≠0,則稱點B為點A的“相關(guān)點”,記作:B=f(A).
(1)請問:點(0,0)的“相關(guān)點”有幾個?判斷這些點是否在同一個圓上,若在,寫出圓的方程;若不在,說明理由;
(2)已知點H(9,3),L(5,3),若點M滿足M=f(H),L=f(M),求點M的坐標(biāo);
(3)已知P0(x0,y0)(x0ÎZ,y0ÎZ)為一個定點, 若點Pi滿足Pi=f (Pi-1),其中i=1,2,3,···,n,求|P0Pn|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線 在點 處的切線  平行直線,且點在第三象限.
(1)求的坐標(biāo);
(2)若直線  , 且  也過切點 ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知直線l經(jīng)過點(0,-2),其傾斜角是60°.
(1)求直線l的方程;(2)求直線l與兩坐標(biāo)軸圍成三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分)已知直線
(1)求證:不論實數(shù)取何值,直線總經(jīng)過一定點.
(2)為使直線不經(jīng)過第二象限,求實數(shù)的取值范圍.
(3)若直線與兩坐標(biāo)軸的正半軸圍成的三角形面積最小,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
如圖,已知三角形的頂點為A(2, 4),B(0,-2),C(-2,3),

求:
(Ⅰ)AB邊上的中線CM所在直線的一般方程;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)在點x=1處的切線與直線垂直,且f(-1)=0,求函數(shù)f(x)在區(qū)間[0,3]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案