(2013•門頭溝區(qū)一模)為了解本市的交通狀況,某校高一年級(jí)的同學(xué)分成了甲、乙、丙三個(gè)組,從下午13點(diǎn)到18點(diǎn),分別對(duì)三個(gè)路口的機(jī)動(dòng)車通行情況進(jìn)行了實(shí)際調(diào)查,并繪制了頻率分布直方圖(如圖),記甲、乙、丙三個(gè)組所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為S1,S2,S3,則它們的大小關(guān)系為
S1>S2>S3
S1>S2>S3
.(用“>”連結(jié))
分析:第二組數(shù)據(jù)是單峰的每一個(gè)小長(zhǎng)方形的差別比較小,數(shù)字?jǐn)?shù)據(jù)較分散,各個(gè)段內(nèi)分布均勻,第一組數(shù)據(jù)的兩端數(shù)字較多,絕大部分?jǐn)?shù)字都處在兩端最分散,而第三組數(shù)據(jù)絕大部分?jǐn)?shù)字都在平均數(shù)左右,是集中,由此得到結(jié)果.
解答:解:根據(jù)三個(gè)頻率分步直方圖知,
第一組數(shù)據(jù)的兩端數(shù)字較多,絕大部分?jǐn)?shù)字都處在兩端數(shù)據(jù)偏離平均數(shù)遠(yuǎn),最分散,其方差最大;
第二組數(shù)據(jù)是單峰的每一個(gè)小長(zhǎng)方形的差別比較小,數(shù)字分布均勻,數(shù)據(jù)不如第一組偏離平均數(shù)大,方差比第一組中數(shù)據(jù)中的方差小,
而第三組數(shù)據(jù)絕大部分?jǐn)?shù)字都在平均數(shù)左右,數(shù)據(jù)最集中,故其方差最小,
總上可知s1>s2>s3
故答案為:s1>s2>s3,
點(diǎn)評(píng):本題考查頻率分步直方圖,考查三組數(shù)據(jù)的標(biāo)準(zhǔn)差,考查標(biāo)準(zhǔn)差的意義,是比較幾組數(shù)據(jù)的波動(dòng)大小的量,考查讀圖,本題是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•門頭溝區(qū)一模)為得到函數(shù)y=sin(π-2x)的圖象,可以將函數(shù)y=sin(2x-
π
3
)的圖象( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•門頭溝區(qū)一模)定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對(duì)于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“等比函數(shù)”.現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù):
①f(x)=2x
②f(x)=log2|x|;
③f(x)=x2
④f(x)=ln2x,
則其中是“等比函數(shù)”的f(x)的序號(hào)為
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•門頭溝區(qū)一模)已知數(shù)列{An}的前n項(xiàng)和為Sn,a1=1,滿足下列條件
①?n∈N*,an≠0;
②點(diǎn)Pn(an,Sn)在函數(shù)f(x)=
x2+x2
的圖象上;
(I)求數(shù)列{an}的通項(xiàng)an及前n項(xiàng)和Sn;
(II)求證:0≤|Pn+1Pn+2|-|PnPn+1|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•門頭溝區(qū)一模)如圖已知平面α,β,且α∩β=AB,PC⊥α,PD⊥β,C,D是垂足.
(Ⅰ)求證:AB⊥平面PCD;
(Ⅱ)若PC=PD=1,CD=
2
,試判斷平面α與平面β的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•門頭溝區(qū)一模)已知函數(shù)f(x)=
2,        x≥0
x2+4x+2,  x<0
的圖象與直線y=k(x+2)-2恰有三個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案